失调的FicD amppylation通过破坏胰腺内分泌稳态导致糖尿病的临床前模型。

IF 7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Amanda K. Casey , Nathan M. Stewart , Naqi Zaidi , Hillery F. Gray , Hazel A. Fields , Masahiro Sakurai , Carlos A. Pinzon-Arteaga , Bret M. Evers , Jun Wu , Kim Orth
{"title":"失调的FicD amppylation通过破坏胰腺内分泌稳态导致糖尿病的临床前模型。","authors":"Amanda K. Casey ,&nbsp;Nathan M. Stewart ,&nbsp;Naqi Zaidi ,&nbsp;Hillery F. Gray ,&nbsp;Hazel A. Fields ,&nbsp;Masahiro Sakurai ,&nbsp;Carlos A. Pinzon-Arteaga ,&nbsp;Bret M. Evers ,&nbsp;Jun Wu ,&nbsp;Kim Orth","doi":"10.1016/j.molmet.2025.102120","DOIUrl":null,"url":null,"abstract":"<div><div>The bi-functional enzyme FicD catalyzes AMPylation and deAMPylation of the endoplasmic reticulum chaperone BiP to modulate ER homeostasis and the unfolded protein response (UPR). Human hFicD with an arginine-to-serine mutation disrupts FicD deAMPylation activity resulting in severe neonatal diabetes. We generated the m<em>FicD</em><sup><em>R371S</em></sup> mutation in mice to create a pre-clinical murine model for neonatal diabetes. We observed elevated BiP AMPylation levels across multiple tissues and signature markers for diabetes including glucose intolerance and reduced serum insulin levels. While the pancreas of m<em>FicD</em><sup><em>R371S</em></sup> mice appeared normal at birth, adult <em>mFicD</em><sup><em>R371S</em></sup> mice displayed disturbed pancreatic islet organization that progressed with age. <em>mFicD</em><sup><em>R371S</em></sup> mice provide a preclinical mouse model for the study of UPR associated diabetes and demonstrate the essentiality of FicD for tissue resilience.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"95 ","pages":"Article 102120"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-clinical model of dysregulated FicD AMPylation causes diabetes by disrupting pancreatic endocrine homeostasis\",\"authors\":\"Amanda K. Casey ,&nbsp;Nathan M. Stewart ,&nbsp;Naqi Zaidi ,&nbsp;Hillery F. Gray ,&nbsp;Hazel A. Fields ,&nbsp;Masahiro Sakurai ,&nbsp;Carlos A. Pinzon-Arteaga ,&nbsp;Bret M. Evers ,&nbsp;Jun Wu ,&nbsp;Kim Orth\",\"doi\":\"10.1016/j.molmet.2025.102120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The bi-functional enzyme FicD catalyzes AMPylation and deAMPylation of the endoplasmic reticulum chaperone BiP to modulate ER homeostasis and the unfolded protein response (UPR). Human hFicD with an arginine-to-serine mutation disrupts FicD deAMPylation activity resulting in severe neonatal diabetes. We generated the m<em>FicD</em><sup><em>R371S</em></sup> mutation in mice to create a pre-clinical murine model for neonatal diabetes. We observed elevated BiP AMPylation levels across multiple tissues and signature markers for diabetes including glucose intolerance and reduced serum insulin levels. While the pancreas of m<em>FicD</em><sup><em>R371S</em></sup> mice appeared normal at birth, adult <em>mFicD</em><sup><em>R371S</em></sup> mice displayed disturbed pancreatic islet organization that progressed with age. <em>mFicD</em><sup><em>R371S</em></sup> mice provide a preclinical mouse model for the study of UPR associated diabetes and demonstrate the essentiality of FicD for tissue resilience.</div></div>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\"95 \",\"pages\":\"Article 102120\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212877825000274\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877825000274","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

双功能酶FicD催化内质网伴侣蛋白BiP的氨酰基化和去氨酰基化,以调节内质网稳态和未折叠蛋白反应(UPR)。具有精氨酸-丝氨酸突变的人hFicD破坏了FicD去氨酰基化活性,导致严重的新生儿糖尿病。我们在小鼠中产生mFicDR371S突变,以创建新生儿糖尿病的临床前小鼠模型。我们观察到,在多个组织和糖尿病的标志性标志物(包括葡萄糖耐受不良和血清胰岛素水平降低)中,BiP AMPylation水平升高。虽然mFicDR371S小鼠的胰腺在出生时看起来正常,但成年mFicDR371S小鼠的胰岛组织紊乱,并随着年龄的增长而发展。mFicDR371S小鼠为研究UPR相关糖尿病提供了临床前小鼠模型,并证明了FicD对组织弹性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pre-clinical model of dysregulated FicD AMPylation causes diabetes by disrupting pancreatic endocrine homeostasis

Pre-clinical model of dysregulated FicD AMPylation causes diabetes by disrupting pancreatic endocrine homeostasis
The bi-functional enzyme FicD catalyzes AMPylation and deAMPylation of the endoplasmic reticulum chaperone BiP to modulate ER homeostasis and the unfolded protein response (UPR). Human hFicD with an arginine-to-serine mutation disrupts FicD deAMPylation activity resulting in severe neonatal diabetes. We generated the mFicDR371S mutation in mice to create a pre-clinical murine model for neonatal diabetes. We observed elevated BiP AMPylation levels across multiple tissues and signature markers for diabetes including glucose intolerance and reduced serum insulin levels. While the pancreas of mFicDR371S mice appeared normal at birth, adult mFicDR371S mice displayed disturbed pancreatic islet organization that progressed with age. mFicDR371S mice provide a preclinical mouse model for the study of UPR associated diabetes and demonstrate the essentiality of FicD for tissue resilience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Metabolism
Molecular Metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
14.50
自引率
2.50%
发文量
219
审稿时长
43 days
期刊介绍: Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction. We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信