双重纯化系统分离线粒体亚群。

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Journal of cell science Pub Date : 2025-05-01 Epub Date: 2025-04-14 DOI:10.1242/jcs.263693
Corey N Cunningham, Jonathan G Van Vranken, Jakeline Larios, Katarina Heyden, Steven P Gygi, Jared Rutter
{"title":"双重纯化系统分离线粒体亚群。","authors":"Corey N Cunningham, Jonathan G Van Vranken, Jakeline Larios, Katarina Heyden, Steven P Gygi, Jared Rutter","doi":"10.1242/jcs.263693","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria perform diverse functions, including producing ATP through oxidative phosphorylation, synthesizing macromolecule precursors, maintaining redox balance among many others. Given this diversity of functions, we and others have hypothesized that cells maintain specialized subpopulations of mitochondria. To begin addressing this hypothesis, we developed a new dual-purification system to isolate subpopulations of mitochondria for chemical and biochemical analyses. We used APEX2 proximity labeling such that mitochondria were biotinylated based on proximity to another organelle. All mitochondria were isolated by an elutable MitoTag-based affinity precipitation system. Biotinylated mitochondria were then purified using immobilized avidin. We used this system to compare the proteomes of endosome- and lipid droplet-associated mitochondria in U-2 OS cells, which demonstrated that these subpopulations were indistinguishable from one another but were distinct from the global mitochondria proteome. Our results suggest that this purification system could aid in describing subpopulations that contribute to intracellular mitochondrial heterogeneity, and that this heterogeneity might be more substantial than previously imagined.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045638/pdf/","citationCount":"0","resultStr":"{\"title\":\"A dual-purification system to isolate mitochondrial subpopulations.\",\"authors\":\"Corey N Cunningham, Jonathan G Van Vranken, Jakeline Larios, Katarina Heyden, Steven P Gygi, Jared Rutter\",\"doi\":\"10.1242/jcs.263693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria perform diverse functions, including producing ATP through oxidative phosphorylation, synthesizing macromolecule precursors, maintaining redox balance among many others. Given this diversity of functions, we and others have hypothesized that cells maintain specialized subpopulations of mitochondria. To begin addressing this hypothesis, we developed a new dual-purification system to isolate subpopulations of mitochondria for chemical and biochemical analyses. We used APEX2 proximity labeling such that mitochondria were biotinylated based on proximity to another organelle. All mitochondria were isolated by an elutable MitoTag-based affinity precipitation system. Biotinylated mitochondria were then purified using immobilized avidin. We used this system to compare the proteomes of endosome- and lipid droplet-associated mitochondria in U-2 OS cells, which demonstrated that these subpopulations were indistinguishable from one another but were distinct from the global mitochondria proteome. Our results suggest that this purification system could aid in describing subpopulations that contribute to intracellular mitochondrial heterogeneity, and that this heterogeneity might be more substantial than previously imagined.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045638/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.263693\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263693","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体具有多种功能,如通过氧化磷酸化产生ATP、合成大分子前体、维持氧化还原平衡等。鉴于这种功能的多样性,我们和其他人假设细胞维持着线粒体的特殊亚群。为了开始解决这一假设,我们开发了一种新的双重纯化系统来分离线粒体亚群进行化学和生化分析。我们使用APEX2接近标记,使线粒体基于接近另一个细胞器而被生物素化。所有线粒体均通过基于mitotag的可洗脱亲和沉淀系统分离。然后用固定化亲和素纯化生物素化的线粒体。我们使用该系统比较了U-2 OS细胞中核内体和脂滴相关线粒体的蛋白质组,结果表明这些亚群彼此无法区分,但与整体线粒体蛋白质组不同。我们的研究结果表明,这种纯化系统可以帮助描述细胞内线粒体异质性的亚群,这种异质性可能比以前想象的更实质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dual-purification system to isolate mitochondrial subpopulations.

Mitochondria perform diverse functions, including producing ATP through oxidative phosphorylation, synthesizing macromolecule precursors, maintaining redox balance among many others. Given this diversity of functions, we and others have hypothesized that cells maintain specialized subpopulations of mitochondria. To begin addressing this hypothesis, we developed a new dual-purification system to isolate subpopulations of mitochondria for chemical and biochemical analyses. We used APEX2 proximity labeling such that mitochondria were biotinylated based on proximity to another organelle. All mitochondria were isolated by an elutable MitoTag-based affinity precipitation system. Biotinylated mitochondria were then purified using immobilized avidin. We used this system to compare the proteomes of endosome- and lipid droplet-associated mitochondria in U-2 OS cells, which demonstrated that these subpopulations were indistinguishable from one another but were distinct from the global mitochondria proteome. Our results suggest that this purification system could aid in describing subpopulations that contribute to intracellular mitochondrial heterogeneity, and that this heterogeneity might be more substantial than previously imagined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信