百里香-香芹醇等摩尔混合物的结构特征:x射线散射和分子动力学。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-03-27 Epub Date: 2025-03-12 DOI:10.1021/acs.jpcb.4c07674
Emanuela Mangiacapre, Fabrizio Lo Celso, Alessandro Triolo, Fabio Ramondo, Daniel J M Irving, Ahmad Alhadid, Mirjana Minceva, Olga Russina
{"title":"百里香-香芹醇等摩尔混合物的结构特征:x射线散射和分子动力学。","authors":"Emanuela Mangiacapre, Fabrizio Lo Celso, Alessandro Triolo, Fabio Ramondo, Daniel J M Irving, Ahmad Alhadid, Mirjana Minceva, Olga Russina","doi":"10.1021/acs.jpcb.4c07674","DOIUrl":null,"url":null,"abstract":"<p><p>We present a structural characterization of a low-transition-temperature mixture (LTTM), consisting of thymol and carvacrol, at an equimolar ratio. Carvacrol and thymol are natural regioisomers of terpenes. When combined at an equimolar ratio, they form a liquid mixture at room temperature, with supercooling capability and glass transition at ca. 210 K. Using small- and wide-angle X-ray scattering and molecular dynamics, we describe the structural complexity within this system. X-ray scattering reveals a low-Q peak at around 0.6 Å<sup>-1</sup>, indicating the existence of mesoscale structural heterogeneities, likely related to the segregation of polar moieties engaged in hydrogen bond (HB) interactions within an aromatic, apolar matrix. These polar interactions are predominantly a result of HBs involving thymol as the HB donor species. The liquid structure is also driven by O-H···π interactions, prevalently due to the ability of the carvacrol π-site to engage in this type of weak interaction as a HB acceptor. Besides, dispersive interactions affect the local arrangement of molecules, with a propensity of carvacrol rings to orient their first neighbors with a perpendicular orientation, while thymol tends to induce a closer approach of other thymol molecules with a preferential parallel alignment. Overall, we observed a complex structural arrangement driven by the interplay of both conventional and weak hydrogen bond interactions, with the aromatic nature of the compounds playing a pivotal role in shaping the system's architecture. Carvacrol and thymol, despite being very similar compounds, are characterized by distinctly different behavior in terms of the interactions they engage in with their neighbors, likely due to the different steric hindrance experienced by their hydroxyl groups, which are close to either a small methyl or a bulky isopropyl group, respectively. Such observations can provide useful hints to develop new solvents with tailored properties.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"3224-3236"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Features of the Thymol-Carvacrol Equimolar Mixture: X-Ray Scattering and Molecular Dynamics.\",\"authors\":\"Emanuela Mangiacapre, Fabrizio Lo Celso, Alessandro Triolo, Fabio Ramondo, Daniel J M Irving, Ahmad Alhadid, Mirjana Minceva, Olga Russina\",\"doi\":\"10.1021/acs.jpcb.4c07674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a structural characterization of a low-transition-temperature mixture (LTTM), consisting of thymol and carvacrol, at an equimolar ratio. Carvacrol and thymol are natural regioisomers of terpenes. When combined at an equimolar ratio, they form a liquid mixture at room temperature, with supercooling capability and glass transition at ca. 210 K. Using small- and wide-angle X-ray scattering and molecular dynamics, we describe the structural complexity within this system. X-ray scattering reveals a low-Q peak at around 0.6 Å<sup>-1</sup>, indicating the existence of mesoscale structural heterogeneities, likely related to the segregation of polar moieties engaged in hydrogen bond (HB) interactions within an aromatic, apolar matrix. These polar interactions are predominantly a result of HBs involving thymol as the HB donor species. The liquid structure is also driven by O-H···π interactions, prevalently due to the ability of the carvacrol π-site to engage in this type of weak interaction as a HB acceptor. Besides, dispersive interactions affect the local arrangement of molecules, with a propensity of carvacrol rings to orient their first neighbors with a perpendicular orientation, while thymol tends to induce a closer approach of other thymol molecules with a preferential parallel alignment. Overall, we observed a complex structural arrangement driven by the interplay of both conventional and weak hydrogen bond interactions, with the aromatic nature of the compounds playing a pivotal role in shaping the system's architecture. Carvacrol and thymol, despite being very similar compounds, are characterized by distinctly different behavior in terms of the interactions they engage in with their neighbors, likely due to the different steric hindrance experienced by their hydroxyl groups, which are close to either a small methyl or a bulky isopropyl group, respectively. Such observations can provide useful hints to develop new solvents with tailored properties.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"3224-3236\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c07674\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07674","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种低过渡温度混合物(LTTM)的结构表征,由百里香酚和香芹酚组成,以等摩尔比。香芹酚和百里香酚是萜烯的天然区域异构体。当以等摩尔比结合时,它们在室温下形成液体混合物,具有过冷能力,并在约210 K时发生玻璃化转变。利用小角和广角x射线散射和分子动力学,我们描述了该系统的结构复杂性。x射线散射显示在0.6 Å-1附近有一个低q峰,表明存在中尺度结构非均质性,可能与芳香族极性矩阵中参与氢键(HB)相互作用的极性部分的分离有关。这些极性相互作用主要是由于涉及百里酚作为HB供体种的HB。O-H··π相互作用也驱动了液体结构,这主要是由于香芹酚π位点作为HB受体参与这种弱相互作用的能力。此外,色散相互作用影响分子的局部排列,香芹酚环倾向于以垂直方向定向其第一个邻居,而百里香酚倾向于诱导其他百里香酚分子以优先平行排列的方式靠近。总的来说,我们观察到由常规氢键和弱氢键相互作用驱动的复杂结构排列,化合物的芳香性质在形成系统结构中起着关键作用。香芹酚和百里香酚尽管是非常相似的化合物,但它们与相邻分子的相互作用却有明显不同的特征,这可能是由于它们的羟基所经历的空间位阻不同,它们分别靠近一个小的甲基或一个大的异丙基。这些观察结果可以为开发具有特定性质的新溶剂提供有用的提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Features of the Thymol-Carvacrol Equimolar Mixture: X-Ray Scattering and Molecular Dynamics.

We present a structural characterization of a low-transition-temperature mixture (LTTM), consisting of thymol and carvacrol, at an equimolar ratio. Carvacrol and thymol are natural regioisomers of terpenes. When combined at an equimolar ratio, they form a liquid mixture at room temperature, with supercooling capability and glass transition at ca. 210 K. Using small- and wide-angle X-ray scattering and molecular dynamics, we describe the structural complexity within this system. X-ray scattering reveals a low-Q peak at around 0.6 Å-1, indicating the existence of mesoscale structural heterogeneities, likely related to the segregation of polar moieties engaged in hydrogen bond (HB) interactions within an aromatic, apolar matrix. These polar interactions are predominantly a result of HBs involving thymol as the HB donor species. The liquid structure is also driven by O-H···π interactions, prevalently due to the ability of the carvacrol π-site to engage in this type of weak interaction as a HB acceptor. Besides, dispersive interactions affect the local arrangement of molecules, with a propensity of carvacrol rings to orient their first neighbors with a perpendicular orientation, while thymol tends to induce a closer approach of other thymol molecules with a preferential parallel alignment. Overall, we observed a complex structural arrangement driven by the interplay of both conventional and weak hydrogen bond interactions, with the aromatic nature of the compounds playing a pivotal role in shaping the system's architecture. Carvacrol and thymol, despite being very similar compounds, are characterized by distinctly different behavior in terms of the interactions they engage in with their neighbors, likely due to the different steric hindrance experienced by their hydroxyl groups, which are close to either a small methyl or a bulky isopropyl group, respectively. Such observations can provide useful hints to develop new solvents with tailored properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信