埃姆登-李纳方程的非线性类分析

IF 0.9 Q2 MATHEMATICS
M. Ahmed, A. H. Kara
{"title":"埃姆登-李纳方程的非线性类分析","authors":"M. Ahmed,&nbsp;A. H. Kara","doi":"10.1007/s13370-025-01279-9","DOIUrl":null,"url":null,"abstract":"<div><p>We present a general method to construct first integrals for some classes of the well known second-order ordinary differential equations, viz., the Emden and Liénard classes of equations. The approach does not require a knowledge of a Lagrangian but, rather, uses the ‘multiplier approach’ [1, 2]. It is then shown how a study of the invariance properties and conservation laws are used to ‘twice’ reduce the equations to solutions. In this paper, we restrict our work to the nonlinearizable cases.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01279-9.pdf","citationCount":"0","resultStr":"{\"title\":\"An analysis of the nonlinearizable classes of Emden-Liénard equations\",\"authors\":\"M. Ahmed,&nbsp;A. H. Kara\",\"doi\":\"10.1007/s13370-025-01279-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a general method to construct first integrals for some classes of the well known second-order ordinary differential equations, viz., the Emden and Liénard classes of equations. The approach does not require a knowledge of a Lagrangian but, rather, uses the ‘multiplier approach’ [1, 2]. It is then shown how a study of the invariance properties and conservation laws are used to ‘twice’ reduce the equations to solutions. In this paper, we restrict our work to the nonlinearizable cases.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13370-025-01279-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01279-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01279-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了构造几类著名的二阶常微分方程(即Emden和lisamadard两类方程)一阶积分的一般方法。该方法不需要拉格朗日定理的知识,而是使用“乘数法”[1,2]。然后展示了如何使用对不变性和守恒定律的研究将方程“二次”化简为解。在本文中,我们将我们的工作限制在非线性的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis of the nonlinearizable classes of Emden-Liénard equations

We present a general method to construct first integrals for some classes of the well known second-order ordinary differential equations, viz., the Emden and Liénard classes of equations. The approach does not require a knowledge of a Lagrangian but, rather, uses the ‘multiplier approach’ [1, 2]. It is then shown how a study of the invariance properties and conservation laws are used to ‘twice’ reduce the equations to solutions. In this paper, we restrict our work to the nonlinearizable cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信