来自SEAC4RS, ACEPOL和三个DISCOVER-AQ运动的高光谱分辨率激光雷达衍生PM2.5浓度评估

IF 3.5 Q3 ENVIRONMENTAL SCIENCES
Bethany Sutherland and Nicholas Meskhidze
{"title":"来自SEAC4RS, ACEPOL和三个DISCOVER-AQ运动的高光谱分辨率激光雷达衍生PM2.5浓度评估","authors":"Bethany Sutherland and Nicholas Meskhidze","doi":"10.1039/D4EA00143E","DOIUrl":null,"url":null,"abstract":"<p >PM<small><sub>2.5</sub></small> (particulate matter with an aerodynamic diameter of less than 2.5 μm) exposure at elevated levels has been associated with adverse health outcomes. However, the high spatiotemporal variability of aerosols poses challenges in monitoring PM<small><sub>2.5</sub></small> using ground-based measurement networks. Previously, we developed a new method (referred to as HSRL-CH) to estimate surface PM<small><sub>2.5</sub></small> concentration and chemical composition using High Spectral Resolution Lidar (HSRL)-retrieved extinction and derived aerosol types. In this study, we evaluate HSRL-CH performance across the United States using HSRL retrievals from five campaigns: DISCOVER-AQ California, SEAC<small><sup>4</sup></small>RS, DISCOVER-AQ Texas, DISCOVER-AQ Colorado, and ACEPOL. We assess the remotely derived PM<small><sub>2.5</sub></small> estimates against measurements from the EPA Air Quality System (AQS) and compare HSRL-CH-derived aerosol chemical compositions with AQS-measured compositions. Across all campaigns, HSRL-CH-derived PM<small><sub>2.5</sub></small> shows a mean absolute error (MAE) of 10.2 μg m<small><sup>−3</sup></small>. The DISCOVER-AQ California campaign had the highest MAE (14.8 μg m<small><sup>−3</sup></small>), while other campaigns had MAE ≤ 7.2 μg m<small><sup>−3</sup></small>. The lowest MAE occurs when dusty mix type aerosols dominate the retrieved aerosol optical depth, while the highest MAE is associated with smoke type aerosols. Different planetary boundary layer height estimates can lead to a 20% difference in MAE. We anticipate that the HSRL-CH method will provide reliable estimates of PM<small><sub>2.5</sub></small> concentration and chemical composition once satellite-based HSRL data acquisition becomes feasible.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 270-290"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d4ea00143e?page=search","citationCount":"0","resultStr":"{\"title\":\"Assessment of high spectral resolution lidar-derived PM2.5 concentration from SEAC4RS, ACEPOL, and three DISCOVER-AQ campaigns†\",\"authors\":\"Bethany Sutherland and Nicholas Meskhidze\",\"doi\":\"10.1039/D4EA00143E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >PM<small><sub>2.5</sub></small> (particulate matter with an aerodynamic diameter of less than 2.5 μm) exposure at elevated levels has been associated with adverse health outcomes. However, the high spatiotemporal variability of aerosols poses challenges in monitoring PM<small><sub>2.5</sub></small> using ground-based measurement networks. Previously, we developed a new method (referred to as HSRL-CH) to estimate surface PM<small><sub>2.5</sub></small> concentration and chemical composition using High Spectral Resolution Lidar (HSRL)-retrieved extinction and derived aerosol types. In this study, we evaluate HSRL-CH performance across the United States using HSRL retrievals from five campaigns: DISCOVER-AQ California, SEAC<small><sup>4</sup></small>RS, DISCOVER-AQ Texas, DISCOVER-AQ Colorado, and ACEPOL. We assess the remotely derived PM<small><sub>2.5</sub></small> estimates against measurements from the EPA Air Quality System (AQS) and compare HSRL-CH-derived aerosol chemical compositions with AQS-measured compositions. Across all campaigns, HSRL-CH-derived PM<small><sub>2.5</sub></small> shows a mean absolute error (MAE) of 10.2 μg m<small><sup>−3</sup></small>. The DISCOVER-AQ California campaign had the highest MAE (14.8 μg m<small><sup>−3</sup></small>), while other campaigns had MAE ≤ 7.2 μg m<small><sup>−3</sup></small>. The lowest MAE occurs when dusty mix type aerosols dominate the retrieved aerosol optical depth, while the highest MAE is associated with smoke type aerosols. Different planetary boundary layer height estimates can lead to a 20% difference in MAE. We anticipate that the HSRL-CH method will provide reliable estimates of PM<small><sub>2.5</sub></small> concentration and chemical composition once satellite-based HSRL data acquisition becomes feasible.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 3\",\"pages\":\" 270-290\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d4ea00143e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d4ea00143e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d4ea00143e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

暴露在高水平的PM2.5(空气动力学直径小于2.5 μm的颗粒物)与不良健康结果有关。然而,气溶胶的高时空变异性给利用地面测量网络监测PM2.5带来了挑战。此前,我们开发了一种新方法(称为HSRL- ch),利用高光谱分辨率激光雷达(HSRL)检索的消光和衍生的气溶胶类型来估计地表PM2.5浓度和化学成分。在本研究中,我们使用来自五个活动的HSRL检索来评估美国各地的HSRL- ch性能:DISCOVER-AQ California, SEAC4RS, DISCOVER-AQ Texas, DISCOVER-AQ Colorado和ACEPOL。我们根据美国环保署空气质量系统(AQS)的测量值评估了远程导出的PM2.5估计值,并将hsrl - ch衍生的气溶胶化学成分与AQS测量的成分进行了比较。在所有运动中,hsrl - ch衍生的PM2.5的平均绝对误差(MAE)为10.2 μg m−3。DISCOVER-AQ加利福尼亚运动的MAE最高(14.8 μg m−3),而其他运动的MAE≤7.2 μg m−3。最低的MAE发生在尘埃混合型气溶胶主导气溶胶光学深度时,而最高的MAE与烟雾型气溶胶有关。不同的行星边界层高度估计可以导致MAE的20%差异。我们预计,一旦基于卫星的HSRL数据采集变得可行,HSRL- ch方法将提供可靠的PM2.5浓度和化学成分估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessment of high spectral resolution lidar-derived PM2.5 concentration from SEAC4RS, ACEPOL, and three DISCOVER-AQ campaigns†

Assessment of high spectral resolution lidar-derived PM2.5 concentration from SEAC4RS, ACEPOL, and three DISCOVER-AQ campaigns†

PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 μm) exposure at elevated levels has been associated with adverse health outcomes. However, the high spatiotemporal variability of aerosols poses challenges in monitoring PM2.5 using ground-based measurement networks. Previously, we developed a new method (referred to as HSRL-CH) to estimate surface PM2.5 concentration and chemical composition using High Spectral Resolution Lidar (HSRL)-retrieved extinction and derived aerosol types. In this study, we evaluate HSRL-CH performance across the United States using HSRL retrievals from five campaigns: DISCOVER-AQ California, SEAC4RS, DISCOVER-AQ Texas, DISCOVER-AQ Colorado, and ACEPOL. We assess the remotely derived PM2.5 estimates against measurements from the EPA Air Quality System (AQS) and compare HSRL-CH-derived aerosol chemical compositions with AQS-measured compositions. Across all campaigns, HSRL-CH-derived PM2.5 shows a mean absolute error (MAE) of 10.2 μg m−3. The DISCOVER-AQ California campaign had the highest MAE (14.8 μg m−3), while other campaigns had MAE ≤ 7.2 μg m−3. The lowest MAE occurs when dusty mix type aerosols dominate the retrieved aerosol optical depth, while the highest MAE is associated with smoke type aerosols. Different planetary boundary layer height estimates can lead to a 20% difference in MAE. We anticipate that the HSRL-CH method will provide reliable estimates of PM2.5 concentration and chemical composition once satellite-based HSRL data acquisition becomes feasible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信