图上随机流中的共享端点相关性和层次结构

IF 1.4 Q2 MATHEMATICS, APPLIED
Joshua Richland , Alexander Strang
{"title":"图上随机流中的共享端点相关性和层次结构","authors":"Joshua Richland ,&nbsp;Alexander Strang","doi":"10.1016/j.rinam.2025.100549","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze the correlation between randomly chosen edge weights on neighboring edges in a directed graph. This shared-endpoint correlation controls the expected organization of randomly drawn edge flows, assuming each edge’s flow is conditionally independent of others given its endpoints. We model different relationships between endpoint attributes and flow by varying the kernel associated with a Gaussian process evaluated on every vertex. We then relate the expected flow structure to the smoothness of functions generated by the Gaussian process. We investigate the shared-endpoint correlation for the squared exponential, mixture, and Matèrn kernels while exploring asymptotics in smooth and rough limits.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100549"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shared-endpoint correlations and hierarchy in random flows on graphs\",\"authors\":\"Joshua Richland ,&nbsp;Alexander Strang\",\"doi\":\"10.1016/j.rinam.2025.100549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We analyze the correlation between randomly chosen edge weights on neighboring edges in a directed graph. This shared-endpoint correlation controls the expected organization of randomly drawn edge flows, assuming each edge’s flow is conditionally independent of others given its endpoints. We model different relationships between endpoint attributes and flow by varying the kernel associated with a Gaussian process evaluated on every vertex. We then relate the expected flow structure to the smoothness of functions generated by the Gaussian process. We investigate the shared-endpoint correlation for the squared exponential, mixture, and Matèrn kernels while exploring asymptotics in smooth and rough limits.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100549\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了有向图中相邻边上随机选择的边权之间的相关性。这种共享端点相关性控制随机绘制的边缘流的预期组织,假设每个边缘流在给定端点的情况下有条件地独立于其他边缘流。我们通过改变与每个顶点上评估的高斯过程相关的核来模拟端点属性和流之间的不同关系。然后,我们将期望的流结构与高斯过程生成的函数的平滑性联系起来。我们研究了平方指数、混合核和mat核的共享端点相关性,同时探索了光滑和粗糙极限的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shared-endpoint correlations and hierarchy in random flows on graphs
We analyze the correlation between randomly chosen edge weights on neighboring edges in a directed graph. This shared-endpoint correlation controls the expected organization of randomly drawn edge flows, assuming each edge’s flow is conditionally independent of others given its endpoints. We model different relationships between endpoint attributes and flow by varying the kernel associated with a Gaussian process evaluated on every vertex. We then relate the expected flow structure to the smoothness of functions generated by the Gaussian process. We investigate the shared-endpoint correlation for the squared exponential, mixture, and Matèrn kernels while exploring asymptotics in smooth and rough limits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信