Fernando Carreño-Navas , Renato Alvarez-Nodarse , Niurka R. Quintero
{"title":"参数驱动、阻尼非线性Schrödinger方程的振荡不稳定性和平稳解的稳定性","authors":"Fernando Carreño-Navas , Renato Alvarez-Nodarse , Niurka R. Quintero","doi":"10.1016/j.physd.2025.134611","DOIUrl":null,"url":null,"abstract":"<div><div>We found two stationary solutions of the parametrically driven, damped nonlinear Schrödinger equation with a nonlinear term proportional to <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn><mi>κ</mi></mrow></msup><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> for positive values of <span><math><mi>κ</mi></math></span>. By linearizing the equation around these exact solutions, we derived the corresponding Sturm–Liouville problem. Our analysis reveals that one of the stationary solutions is unstable, while the stability of the other solution depends on the amplitude of the parametric force, the damping coefficient, and the nonlinearity parameter <span><math><mi>κ</mi></math></span>. An exceptional change of variables facilitates the computation of the stability diagram through numerical solutions of the eigenvalue problem as a specific parameter <span><math><mi>ɛ</mi></math></span> varies within a bounded interval. For <span><math><mrow><mi>κ</mi><mo><</mo><mn>2</mn></mrow></math></span> , an <em>oscillatory instability</em> is predicted analytically and confirmed numerically. Our principal result establishes that for <span><math><mrow><mi>κ</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, there exists a critical value of <span><math><mi>ɛ</mi></math></span> beyond which the unstable soliton becomes stable, exhibiting <em>oscillatory stability</em>.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134611"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillatory instability and stability of stationary solutions in the parametrically driven, damped nonlinear Schrödinger equation\",\"authors\":\"Fernando Carreño-Navas , Renato Alvarez-Nodarse , Niurka R. Quintero\",\"doi\":\"10.1016/j.physd.2025.134611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We found two stationary solutions of the parametrically driven, damped nonlinear Schrödinger equation with a nonlinear term proportional to <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn><mi>κ</mi></mrow></msup><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> for positive values of <span><math><mi>κ</mi></math></span>. By linearizing the equation around these exact solutions, we derived the corresponding Sturm–Liouville problem. Our analysis reveals that one of the stationary solutions is unstable, while the stability of the other solution depends on the amplitude of the parametric force, the damping coefficient, and the nonlinearity parameter <span><math><mi>κ</mi></math></span>. An exceptional change of variables facilitates the computation of the stability diagram through numerical solutions of the eigenvalue problem as a specific parameter <span><math><mi>ɛ</mi></math></span> varies within a bounded interval. For <span><math><mrow><mi>κ</mi><mo><</mo><mn>2</mn></mrow></math></span> , an <em>oscillatory instability</em> is predicted analytically and confirmed numerically. Our principal result establishes that for <span><math><mrow><mi>κ</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, there exists a critical value of <span><math><mi>ɛ</mi></math></span> beyond which the unstable soliton becomes stable, exhibiting <em>oscillatory stability</em>.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"476 \",\"pages\":\"Article 134611\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925000909\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000909","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Oscillatory instability and stability of stationary solutions in the parametrically driven, damped nonlinear Schrödinger equation
We found two stationary solutions of the parametrically driven, damped nonlinear Schrödinger equation with a nonlinear term proportional to for positive values of . By linearizing the equation around these exact solutions, we derived the corresponding Sturm–Liouville problem. Our analysis reveals that one of the stationary solutions is unstable, while the stability of the other solution depends on the amplitude of the parametric force, the damping coefficient, and the nonlinearity parameter . An exceptional change of variables facilitates the computation of the stability diagram through numerical solutions of the eigenvalue problem as a specific parameter varies within a bounded interval. For , an oscillatory instability is predicted analytically and confirmed numerically. Our principal result establishes that for , there exists a critical value of beyond which the unstable soliton becomes stable, exhibiting oscillatory stability.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.