参数驱动、阻尼非线性Schrödinger方程的振荡不稳定性和平稳解的稳定性

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Fernando Carreño-Navas , Renato Alvarez-Nodarse , Niurka R. Quintero
{"title":"参数驱动、阻尼非线性Schrödinger方程的振荡不稳定性和平稳解的稳定性","authors":"Fernando Carreño-Navas ,&nbsp;Renato Alvarez-Nodarse ,&nbsp;Niurka R. Quintero","doi":"10.1016/j.physd.2025.134611","DOIUrl":null,"url":null,"abstract":"<div><div>We found two stationary solutions of the parametrically driven, damped nonlinear Schrödinger equation with a nonlinear term proportional to <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn><mi>κ</mi></mrow></msup><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> for positive values of <span><math><mi>κ</mi></math></span>. By linearizing the equation around these exact solutions, we derived the corresponding Sturm–Liouville problem. Our analysis reveals that one of the stationary solutions is unstable, while the stability of the other solution depends on the amplitude of the parametric force, the damping coefficient, and the nonlinearity parameter <span><math><mi>κ</mi></math></span>. An exceptional change of variables facilitates the computation of the stability diagram through numerical solutions of the eigenvalue problem as a specific parameter <span><math><mi>ɛ</mi></math></span> varies within a bounded interval. For <span><math><mrow><mi>κ</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span> , an <em>oscillatory instability</em> is predicted analytically and confirmed numerically. Our principal result establishes that for <span><math><mrow><mi>κ</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, there exists a critical value of <span><math><mi>ɛ</mi></math></span> beyond which the unstable soliton becomes stable, exhibiting <em>oscillatory stability</em>.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134611"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillatory instability and stability of stationary solutions in the parametrically driven, damped nonlinear Schrödinger equation\",\"authors\":\"Fernando Carreño-Navas ,&nbsp;Renato Alvarez-Nodarse ,&nbsp;Niurka R. Quintero\",\"doi\":\"10.1016/j.physd.2025.134611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We found two stationary solutions of the parametrically driven, damped nonlinear Schrödinger equation with a nonlinear term proportional to <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn><mi>κ</mi></mrow></msup><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> for positive values of <span><math><mi>κ</mi></math></span>. By linearizing the equation around these exact solutions, we derived the corresponding Sturm–Liouville problem. Our analysis reveals that one of the stationary solutions is unstable, while the stability of the other solution depends on the amplitude of the parametric force, the damping coefficient, and the nonlinearity parameter <span><math><mi>κ</mi></math></span>. An exceptional change of variables facilitates the computation of the stability diagram through numerical solutions of the eigenvalue problem as a specific parameter <span><math><mi>ɛ</mi></math></span> varies within a bounded interval. For <span><math><mrow><mi>κ</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span> , an <em>oscillatory instability</em> is predicted analytically and confirmed numerically. Our principal result establishes that for <span><math><mrow><mi>κ</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, there exists a critical value of <span><math><mi>ɛ</mi></math></span> beyond which the unstable soliton becomes stable, exhibiting <em>oscillatory stability</em>.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"476 \",\"pages\":\"Article 134611\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925000909\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000909","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们找到了参数驱动,阻尼非线性Schrödinger方程的两个平稳解,该方程的非线性项正比于κ的正值|ψ(x,t)|2κψ(x,t)。通过围绕这些精确解对方程进行线性化,我们推导出相应的Sturm-Liouville问题。我们的分析表明,其中一个平稳解是不稳定的,而另一个解的稳定性取决于参数力的振幅、阻尼系数和非线性参数κ。当一个特定的参数在有界区间内变化时,变量的异常变化通过特征值问题的数值解简化了稳定性图的计算。对κ<;2的振荡不稳定性进行了解析预测和数值验证。我们的主要结果表明,当κ≥2时,存在一个临界值,超过这个临界值,不稳定孤子变得稳定,表现出振荡稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillatory instability and stability of stationary solutions in the parametrically driven, damped nonlinear Schrödinger equation
We found two stationary solutions of the parametrically driven, damped nonlinear Schrödinger equation with a nonlinear term proportional to |ψ(x,t)|2κψ(x,t) for positive values of κ. By linearizing the equation around these exact solutions, we derived the corresponding Sturm–Liouville problem. Our analysis reveals that one of the stationary solutions is unstable, while the stability of the other solution depends on the amplitude of the parametric force, the damping coefficient, and the nonlinearity parameter κ. An exceptional change of variables facilitates the computation of the stability diagram through numerical solutions of the eigenvalue problem as a specific parameter ɛ varies within a bounded interval. For κ<2 , an oscillatory instability is predicted analytically and confirmed numerically. Our principal result establishes that for κ2, there exists a critical value of ɛ beyond which the unstable soliton becomes stable, exhibiting oscillatory stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信