防止反应扩散方程的有限时间爆炸

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
John Ivanhoe, Michael Salins
{"title":"防止反应扩散方程的有限时间爆炸","authors":"John Ivanhoe,&nbsp;Michael Salins","doi":"10.1016/j.spa.2025.104627","DOIUrl":null,"url":null,"abstract":"<div><div>We examine stochastic reaction–diffusion equations of the form <span><math><mrow><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mi>A</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>σ</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> on a bounded spatial domain <span><math><mrow><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>, where <span><math><mi>f</mi></math></span> models a constrained, dissipative force that keeps solutions between <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span> and 1. To model this, we assume that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mi>σ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> are unbounded as <span><math><mi>u</mi></math></span> approaches <span><math><mrow><mo>±</mo><mn>1</mn></mrow></math></span>. We identify sufficient conditions on the growth rates of <span><math><mi>f</mi></math></span> and <span><math><mi>σ</mi></math></span> that guarantee solutions to not escape this bounded set.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"185 ","pages":"Article 104627"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventing finite-time blowup in a constrained potential for reaction–diffusion equations\",\"authors\":\"John Ivanhoe,&nbsp;Michael Salins\",\"doi\":\"10.1016/j.spa.2025.104627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We examine stochastic reaction–diffusion equations of the form <span><math><mrow><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mi>A</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>σ</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> on a bounded spatial domain <span><math><mrow><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>, where <span><math><mi>f</mi></math></span> models a constrained, dissipative force that keeps solutions between <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span> and 1. To model this, we assume that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mi>σ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> are unbounded as <span><math><mi>u</mi></math></span> approaches <span><math><mrow><mo>±</mo><mn>1</mn></mrow></math></span>. We identify sufficient conditions on the growth rates of <span><math><mi>f</mi></math></span> and <span><math><mi>σ</mi></math></span> that guarantee solutions to not escape this bounded set.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"185 \",\"pages\":\"Article 104627\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925000687\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000687","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们在有界空间域D∧Rd上研究∂u∂t=Au(t,x)+f(u(t,x))+σ(u(t,x))Ẇ(t,x)形式的随机反应扩散方程,其中f模拟一个约束的耗散力,使解保持在−1和1之间。为了模拟这一点,我们假设f(u),σ(u)在u接近±1时是无界的。我们确定了f和σ的增长率的充分条件,保证解不脱离这个有界集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preventing finite-time blowup in a constrained potential for reaction–diffusion equations
We examine stochastic reaction–diffusion equations of the form ut=Au(t,x)+f(u(t,x))+σ(u(t,x))Ẇ(t,x) on a bounded spatial domain DRd, where f models a constrained, dissipative force that keeps solutions between 1 and 1. To model this, we assume that f(u),σ(u) are unbounded as u approaches ±1. We identify sufficient conditions on the growth rates of f and σ that guarantee solutions to not escape this bounded set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信