对有限图的预期命中时间估计

IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY
Laurent Saloff-Coste , Yuwen Wang
{"title":"对有限图的预期命中时间估计","authors":"Laurent Saloff-Coste ,&nbsp;Yuwen Wang","doi":"10.1016/j.spa.2025.104626","DOIUrl":null,"url":null,"abstract":"<div><div>The expected hitting time from vertex <span><math><mi>a</mi></math></span> to vertex <span><math><mi>b</mi></math></span>, <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span>, is the expected value of the time it takes a random walk starting at <span><math><mi>a</mi></math></span> to reach <span><math><mi>b</mi></math></span>. In this paper, we give estimates for <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> when the distance between <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span> is comparable to the diameter of the graph, and the graph satisfies a Harnack condition. We show that, in such cases, <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> can be estimated in terms of the volumes of balls around <span><math><mi>b</mi></math></span>. Using our results, we estimate <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> on various graphs, such as rectangular tori, some convex traces in <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, and fractal graphs. Our proofs use heat kernel estimates.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"185 ","pages":"Article 104626"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expected hitting time estimates on finite graphs\",\"authors\":\"Laurent Saloff-Coste ,&nbsp;Yuwen Wang\",\"doi\":\"10.1016/j.spa.2025.104626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The expected hitting time from vertex <span><math><mi>a</mi></math></span> to vertex <span><math><mi>b</mi></math></span>, <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span>, is the expected value of the time it takes a random walk starting at <span><math><mi>a</mi></math></span> to reach <span><math><mi>b</mi></math></span>. In this paper, we give estimates for <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> when the distance between <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span> is comparable to the diameter of the graph, and the graph satisfies a Harnack condition. We show that, in such cases, <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> can be estimated in terms of the volumes of balls around <span><math><mi>b</mi></math></span>. Using our results, we estimate <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> on various graphs, such as rectangular tori, some convex traces in <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, and fractal graphs. Our proofs use heat kernel estimates.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"185 \",\"pages\":\"Article 104626\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925000675\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000675","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

从点a到点b的期望命中时间H(a,b)是从点a开始随机行走到达点b所需时间的期望值。本文给出了当点a与点b之间的距离与图的直径相当,且图满足Harnack条件时H(a,b)的估计。我们证明,在这种情况下,H(a,b)可以根据b周围的球的体积来估计。使用我们的结果,我们可以在各种图上估计H(a,b),例如矩形环面,Zd中的一些凸迹和分形图。我们的证明使用热核估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expected hitting time estimates on finite graphs
The expected hitting time from vertex a to vertex b, H(a,b), is the expected value of the time it takes a random walk starting at a to reach b. In this paper, we give estimates for H(a,b) when the distance between a and b is comparable to the diameter of the graph, and the graph satisfies a Harnack condition. We show that, in such cases, H(a,b) can be estimated in terms of the volumes of balls around b. Using our results, we estimate H(a,b) on various graphs, such as rectangular tori, some convex traces in Zd, and fractal graphs. Our proofs use heat kernel estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信