Huaizhou Jin , Yanlong Cai , Chenhui Song , Shangzhong Jin , Qiang Lin
{"title":"用于生物传感的单分子表面增强拉曼光谱(SERS)的研究进展","authors":"Huaizhou Jin , Yanlong Cai , Chenhui Song , Shangzhong Jin , Qiang Lin","doi":"10.1016/j.vibspec.2025.103784","DOIUrl":null,"url":null,"abstract":"<div><div>Single-molecule (SM) detection and manipulation have revolutionized the field of biosensing, enabling unprecedented insights into the heterogeneity, dynamics, and interactions of biomolecules. This review focuses on the latest advances in single molecule Surface Enhanced Raman Spectroscopy (SM-SERS) techniques and approaches to confirm SM events, and examines four major approaches: bi-analyte SERS (BiASERS), plasmonic trapping, nanopore/slits, and chemical binding. We will discuss the development of these techniques as well as fabrication and application plasmonic nanostructures, and will explore the integration of these methods. Furthermore, we will discuss the challenges and future perspectives in the SM-SERS and the confirmation of SM events, focusing on improving sensitivity, reproducibility, and the ability to probe sub-angstrom molecular dynamics in order to provide a comprehensive overview.</div></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"138 ","pages":"Article 103784"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in single-molecule surface-enhanced Raman spectroscopy (SERS) for biosensing\",\"authors\":\"Huaizhou Jin , Yanlong Cai , Chenhui Song , Shangzhong Jin , Qiang Lin\",\"doi\":\"10.1016/j.vibspec.2025.103784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Single-molecule (SM) detection and manipulation have revolutionized the field of biosensing, enabling unprecedented insights into the heterogeneity, dynamics, and interactions of biomolecules. This review focuses on the latest advances in single molecule Surface Enhanced Raman Spectroscopy (SM-SERS) techniques and approaches to confirm SM events, and examines four major approaches: bi-analyte SERS (BiASERS), plasmonic trapping, nanopore/slits, and chemical binding. We will discuss the development of these techniques as well as fabrication and application plasmonic nanostructures, and will explore the integration of these methods. Furthermore, we will discuss the challenges and future perspectives in the SM-SERS and the confirmation of SM events, focusing on improving sensitivity, reproducibility, and the ability to probe sub-angstrom molecular dynamics in order to provide a comprehensive overview.</div></div>\",\"PeriodicalId\":23656,\"journal\":{\"name\":\"Vibrational Spectroscopy\",\"volume\":\"138 \",\"pages\":\"Article 103784\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrational Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924203125000189\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203125000189","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Advances in single-molecule surface-enhanced Raman spectroscopy (SERS) for biosensing
Single-molecule (SM) detection and manipulation have revolutionized the field of biosensing, enabling unprecedented insights into the heterogeneity, dynamics, and interactions of biomolecules. This review focuses on the latest advances in single molecule Surface Enhanced Raman Spectroscopy (SM-SERS) techniques and approaches to confirm SM events, and examines four major approaches: bi-analyte SERS (BiASERS), plasmonic trapping, nanopore/slits, and chemical binding. We will discuss the development of these techniques as well as fabrication and application plasmonic nanostructures, and will explore the integration of these methods. Furthermore, we will discuss the challenges and future perspectives in the SM-SERS and the confirmation of SM events, focusing on improving sensitivity, reproducibility, and the ability to probe sub-angstrom molecular dynamics in order to provide a comprehensive overview.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.