唾液及其主要成分的 SERS 分析:各种采集方法、样品稀释、激发波长和增强基质的影响

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Michaela Klenotová , Pavel Matějka
{"title":"唾液及其主要成分的 SERS 分析:各种采集方法、样品稀释、激发波长和增强基质的影响","authors":"Michaela Klenotová ,&nbsp;Pavel Matějka","doi":"10.1016/j.vibspec.2025.103787","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, human saliva has become a subject of research as an excellent material for patient-friendly diagnostics. An increasing number of diagnostic tests utilize saliva due to its easy and noninvasive collection, eliminating the patient's stress. Simultaneously, developing Surface-Enhanced Raman Scattering (SERS) spectroscopy offers new possibilities for analyzing saliva's composition. Saliva is a complex biological material; many factors influence its composition, including medication use, diseases, stress, hormone levels, diet, age, and hydration. This complexity raises the question of whether it is possible to observe and definitively attribute changes in specific substances through SERS spectra. One of the key questions we posed is how the SERS spectrum will change with an increased level of α-amylase 1 A (AMY1A), an enzyme marker of acute stress. AMY1A forms complexes with proline-rich proteins (PRP). Thus, we examined whether similar spectral changes are observed with a PRP level increase in saliva. Another focus was lysozyme C (LYZ C), a nonspecific marker of infectious diseases. We examined how increased levels of LYZ C affect SERS spectra, particularly considering its sensitivity to changes in the ionic composition of saliva and its complexation with PRP and lactoferrin (LF). Moreover, we explored whether the albumin (HSA) level, which plays a vital role in regulating osmotic pressure, influences LYZ C activity and how it is manifested in SERS. Furthermore, we investigated the effect of saliva dilution and collection methods on SERS spectra. We searched for correlations with significant components such as AMY1A, HSA, LYZ C, LF, and Poly-L-proline (PLP is an analog of PRP). We showed the role of gold (Au) and silver (Ag) substrates, comparing the spectral differences. Solving the issues is crucial for the ability of SERS techniques to detect and/or monitor biomolecules in saliva and can lead to significant advancements in noninvasive diagnostics.</div></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"138 ","pages":"Article 103787"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SERS analysis of saliva and its key components: The effects of various collection methods, sample dilution, excitation wavelengths, and enhancing substrates\",\"authors\":\"Michaela Klenotová ,&nbsp;Pavel Matějka\",\"doi\":\"10.1016/j.vibspec.2025.103787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, human saliva has become a subject of research as an excellent material for patient-friendly diagnostics. An increasing number of diagnostic tests utilize saliva due to its easy and noninvasive collection, eliminating the patient's stress. Simultaneously, developing Surface-Enhanced Raman Scattering (SERS) spectroscopy offers new possibilities for analyzing saliva's composition. Saliva is a complex biological material; many factors influence its composition, including medication use, diseases, stress, hormone levels, diet, age, and hydration. This complexity raises the question of whether it is possible to observe and definitively attribute changes in specific substances through SERS spectra. One of the key questions we posed is how the SERS spectrum will change with an increased level of α-amylase 1 A (AMY1A), an enzyme marker of acute stress. AMY1A forms complexes with proline-rich proteins (PRP). Thus, we examined whether similar spectral changes are observed with a PRP level increase in saliva. Another focus was lysozyme C (LYZ C), a nonspecific marker of infectious diseases. We examined how increased levels of LYZ C affect SERS spectra, particularly considering its sensitivity to changes in the ionic composition of saliva and its complexation with PRP and lactoferrin (LF). Moreover, we explored whether the albumin (HSA) level, which plays a vital role in regulating osmotic pressure, influences LYZ C activity and how it is manifested in SERS. Furthermore, we investigated the effect of saliva dilution and collection methods on SERS spectra. We searched for correlations with significant components such as AMY1A, HSA, LYZ C, LF, and Poly-L-proline (PLP is an analog of PRP). We showed the role of gold (Au) and silver (Ag) substrates, comparing the spectral differences. Solving the issues is crucial for the ability of SERS techniques to detect and/or monitor biomolecules in saliva and can lead to significant advancements in noninvasive diagnostics.</div></div>\",\"PeriodicalId\":23656,\"journal\":{\"name\":\"Vibrational Spectroscopy\",\"volume\":\"138 \",\"pages\":\"Article 103787\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrational Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924203125000219\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203125000219","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
SERS analysis of saliva and its key components: The effects of various collection methods, sample dilution, excitation wavelengths, and enhancing substrates
Recently, human saliva has become a subject of research as an excellent material for patient-friendly diagnostics. An increasing number of diagnostic tests utilize saliva due to its easy and noninvasive collection, eliminating the patient's stress. Simultaneously, developing Surface-Enhanced Raman Scattering (SERS) spectroscopy offers new possibilities for analyzing saliva's composition. Saliva is a complex biological material; many factors influence its composition, including medication use, diseases, stress, hormone levels, diet, age, and hydration. This complexity raises the question of whether it is possible to observe and definitively attribute changes in specific substances through SERS spectra. One of the key questions we posed is how the SERS spectrum will change with an increased level of α-amylase 1 A (AMY1A), an enzyme marker of acute stress. AMY1A forms complexes with proline-rich proteins (PRP). Thus, we examined whether similar spectral changes are observed with a PRP level increase in saliva. Another focus was lysozyme C (LYZ C), a nonspecific marker of infectious diseases. We examined how increased levels of LYZ C affect SERS spectra, particularly considering its sensitivity to changes in the ionic composition of saliva and its complexation with PRP and lactoferrin (LF). Moreover, we explored whether the albumin (HSA) level, which plays a vital role in regulating osmotic pressure, influences LYZ C activity and how it is manifested in SERS. Furthermore, we investigated the effect of saliva dilution and collection methods on SERS spectra. We searched for correlations with significant components such as AMY1A, HSA, LYZ C, LF, and Poly-L-proline (PLP is an analog of PRP). We showed the role of gold (Au) and silver (Ag) substrates, comparing the spectral differences. Solving the issues is crucial for the ability of SERS techniques to detect and/or monitor biomolecules in saliva and can lead to significant advancements in noninvasive diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vibrational Spectroscopy
Vibrational Spectroscopy 化学-分析化学
CiteScore
4.70
自引率
4.00%
发文量
103
审稿时长
52 days
期刊介绍: Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation. The topics covered by the journal include: Sampling techniques, Vibrational spectroscopy coupled with separation techniques, Instrumentation (Fourier transform, conventional and laser based), Data manipulation, Spectra-structure correlation and group frequencies. The application areas covered include: Analytical chemistry, Bio-organic and bio-inorganic chemistry, Organic chemistry, Inorganic chemistry, Catalysis, Environmental science, Industrial chemistry, Materials science, Physical chemistry, Polymer science, Process control, Specialized problem solving.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信