利用机器学习技术对氧化铜(CuO)和氧化石墨烯(GO)进行光谱分析

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zeeshan Saleem Mufti , Kashaf Mahboob , Muhammad Nauman Aslam , Sadaf Hussain , Abdoalrahman S.A. Omer , Tanweer Sohail , Sagheer Abbas , Ilyas Khan , Muhammad Adnan Khan
{"title":"利用机器学习技术对氧化铜(CuO)和氧化石墨烯(GO)进行光谱分析","authors":"Zeeshan Saleem Mufti ,&nbsp;Kashaf Mahboob ,&nbsp;Muhammad Nauman Aslam ,&nbsp;Sadaf Hussain ,&nbsp;Abdoalrahman S.A. Omer ,&nbsp;Tanweer Sohail ,&nbsp;Sagheer Abbas ,&nbsp;Ilyas Khan ,&nbsp;Muhammad Adnan Khan","doi":"10.1016/j.eij.2025.100632","DOIUrl":null,"url":null,"abstract":"<div><div>Chemical graph theory has recently gained much attraction among researchers due to its extensive use in mathematical chemistry. In this research article, We have studied the spectral properties such as eigenvalues, energy and Estrada index of some chemical structures such as Cupric oxide (<span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi></mrow></math></span>) and Graphene Oxide (GO). We have computed the energy <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mrow><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow></math></span> and the other invariant Estrada index <span><math><mrow><mi>E</mi><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup></mrow></math></span> of the above mentioned graph structures and obtain the polynomial regression analysis using machine learning techniques. This approach permitted us to predict the spectral values more precisely and analyze the difference between the actual and predicted values. The actual values of energy and Estrada index is represented by <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi><mi>v</mi></mrow></msub></math></span> and <span><math><mrow><mi>E</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi><mi>v</mi></mrow></msub></mrow></math></span> while the predicted values of energy and Estrada index is represented by <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mi>v</mi></mrow></msub></math></span> and <span><math><mrow><mi>E</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mi>v</mi></mrow></msub></mrow></math></span>, where <span><math><mrow><mi>a</mi><mi>v</mi></mrow></math></span> represents ”actual value” and <span><math><mrow><mi>p</mi><mi>v</mi></mrow></math></span> represents ”predicted value”. We first use traditional method based on softwares and get the actual values (<span><math><mrow><mi>a</mi><mi>v</mi></mrow></math></span>) (see section 2). Then we perform machine learning techniques to generate a best fit model and get the predicted values (<span><math><mrow><mi>p</mi><mi>v</mi></mrow></math></span>) of the energies and Estrada index of Cupric oxide <span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi></mrow></math></span> and Graphene Oxide <span><math><mrow><mi>G</mi><mi>O</mi></mrow></math></span> by using the best fit second order polynomial for Energy and Estrada Index of <span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi></mrow></math></span> is obtained as <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>CuO</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>007</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>5</mn><mo>.</mo><mn>892</mn><mspace></mspace><mi>m</mi><mi>n</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>243</mn><mspace></mspace><mi>m</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>169</mn><mi>n</mi><mo>−</mo><mn>0</mn><mo>.</mo><mn>365</mn></mrow></math></span> and <span><math><mrow><mi>E</mi><mi>E</mi><mrow><mo>(</mo><mi>CuO</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>537</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>084</mn><mi>m</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>084</mn><mi>n</mi><mo>+</mo><mn>13</mn><mo>.</mo><mn>533</mn><mspace></mspace><mi>m</mi><mi>n</mi></mrow></math></span>, respectively. Similarly, the best fit second order polynomial for Energy and Estrada Index of <span><math><mrow><mi>G</mi><mi>O</mi></mrow></math></span> is obtained as <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>GO</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>266</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>533</mn><mspace></mspace><mi>m</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>598</mn><mi>n</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>014</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>3</mn><mo>.</mo><mn>133</mn><mi>m</mi><mi>n</mi><mo>+</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>017</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mi>E</mi><mi>E</mi><mrow><mo>(</mo><mi>GO</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>671</mn><mo>+</mo><mn>4</mn><mo>.</mo><mn>400</mn><mi>m</mi><mo>+</mo><mn>4</mn><mo>.</mo><mn>440</mn><mi>n</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>016</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>6</mn><mo>.</mo><mn>553</mn><mi>m</mi><mi>n</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>014</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, respectively. We have observed the difference between <span><math><mrow><mi>a</mi><mi>v</mi></mrow></math></span> and <span><math><mrow><mi>p</mi><mi>v</mi></mrow></math></span> which shows our machine learning model is best fit model as the error between the <span><math><mrow><mi>a</mi><mi>v</mi></mrow></math></span> and <span><math><mrow><mi>p</mi><mi>v</mi></mrow></math></span> is minimum.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"29 ","pages":"Article 100632"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral analysis of Cupric oxide (CuO) and Graphene Oxide (GO) via machine learning techniques\",\"authors\":\"Zeeshan Saleem Mufti ,&nbsp;Kashaf Mahboob ,&nbsp;Muhammad Nauman Aslam ,&nbsp;Sadaf Hussain ,&nbsp;Abdoalrahman S.A. Omer ,&nbsp;Tanweer Sohail ,&nbsp;Sagheer Abbas ,&nbsp;Ilyas Khan ,&nbsp;Muhammad Adnan Khan\",\"doi\":\"10.1016/j.eij.2025.100632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chemical graph theory has recently gained much attraction among researchers due to its extensive use in mathematical chemistry. In this research article, We have studied the spectral properties such as eigenvalues, energy and Estrada index of some chemical structures such as Cupric oxide (<span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi></mrow></math></span>) and Graphene Oxide (GO). We have computed the energy <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mrow><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow></math></span> and the other invariant Estrada index <span><math><mrow><mi>E</mi><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup></mrow></math></span> of the above mentioned graph structures and obtain the polynomial regression analysis using machine learning techniques. This approach permitted us to predict the spectral values more precisely and analyze the difference between the actual and predicted values. The actual values of energy and Estrada index is represented by <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi><mi>v</mi></mrow></msub></math></span> and <span><math><mrow><mi>E</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi><mi>v</mi></mrow></msub></mrow></math></span> while the predicted values of energy and Estrada index is represented by <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mi>v</mi></mrow></msub></math></span> and <span><math><mrow><mi>E</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mi>v</mi></mrow></msub></mrow></math></span>, where <span><math><mrow><mi>a</mi><mi>v</mi></mrow></math></span> represents ”actual value” and <span><math><mrow><mi>p</mi><mi>v</mi></mrow></math></span> represents ”predicted value”. We first use traditional method based on softwares and get the actual values (<span><math><mrow><mi>a</mi><mi>v</mi></mrow></math></span>) (see section 2). Then we perform machine learning techniques to generate a best fit model and get the predicted values (<span><math><mrow><mi>p</mi><mi>v</mi></mrow></math></span>) of the energies and Estrada index of Cupric oxide <span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi></mrow></math></span> and Graphene Oxide <span><math><mrow><mi>G</mi><mi>O</mi></mrow></math></span> by using the best fit second order polynomial for Energy and Estrada Index of <span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi></mrow></math></span> is obtained as <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>CuO</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>007</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>5</mn><mo>.</mo><mn>892</mn><mspace></mspace><mi>m</mi><mi>n</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>243</mn><mspace></mspace><mi>m</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>169</mn><mi>n</mi><mo>−</mo><mn>0</mn><mo>.</mo><mn>365</mn></mrow></math></span> and <span><math><mrow><mi>E</mi><mi>E</mi><mrow><mo>(</mo><mi>CuO</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>537</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>084</mn><mi>m</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>084</mn><mi>n</mi><mo>+</mo><mn>13</mn><mo>.</mo><mn>533</mn><mspace></mspace><mi>m</mi><mi>n</mi></mrow></math></span>, respectively. Similarly, the best fit second order polynomial for Energy and Estrada Index of <span><math><mrow><mi>G</mi><mi>O</mi></mrow></math></span> is obtained as <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>GO</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>266</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>533</mn><mspace></mspace><mi>m</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>598</mn><mi>n</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>014</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>3</mn><mo>.</mo><mn>133</mn><mi>m</mi><mi>n</mi><mo>+</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>017</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mi>E</mi><mi>E</mi><mrow><mo>(</mo><mi>GO</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>671</mn><mo>+</mo><mn>4</mn><mo>.</mo><mn>400</mn><mi>m</mi><mo>+</mo><mn>4</mn><mo>.</mo><mn>440</mn><mi>n</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>016</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>6</mn><mo>.</mo><mn>553</mn><mi>m</mi><mi>n</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>014</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, respectively. We have observed the difference between <span><math><mrow><mi>a</mi><mi>v</mi></mrow></math></span> and <span><math><mrow><mi>p</mi><mi>v</mi></mrow></math></span> which shows our machine learning model is best fit model as the error between the <span><math><mrow><mi>a</mi><mi>v</mi></mrow></math></span> and <span><math><mrow><mi>p</mi><mi>v</mi></mrow></math></span> is minimum.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":\"29 \",\"pages\":\"Article 100632\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866525000258\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525000258","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

化学图论由于其在数学化学中的广泛应用,近年来在研究人员中引起了很大的兴趣。本文研究了氧化铜(CuO)和氧化石墨烯(GO)等化学结构的特征值、能量和Estrada指数等光谱性质。我们计算了上述图结构的能量E(G)=∑i=0n|λi|和另一个不变Estrada指数EE(G)=∑i=1neλi,并利用机器学习技术获得了多项式回归分析。这种方法使我们能够更精确地预测光谱值,并分析实际值与预测值之间的差异。能量和Estrada指数的实际值用Eav和EEav表示,能量和Estrada指数的预测值用Epv和EEpv表示,其中av代表“实际值”,pv代表“预测值”。我们首先使用传统方法基于软件和实际值(av)(见第二节)。然后我们执行机器学习技术来生成最适合模型并得到预测值(pv)的能量和埃斯特拉达指数氧化铜措和氧化石墨烯通过使用最适合的二阶多项式对能源和埃斯特拉达措获得指数E(错)=−0.007 m2 + 5.892 mn + 2.243 + 2.169 n−0.365和EE(错)= 0.537 + 2.084米+ 2.084 n + 13.533 mn,分别。同样,GO的Energy和Estrada Index的最佳拟合二阶多项式分别为E(GO)= - 0.266+2.533m+2.598n+0.014m2+3.133mn+ - 0.017n2和EE(GO)= - 1.671+4.400m+4.440n+0.016m2+6.553mn+0.014n2。我们已经观察到av和pv之间的差异,这表明我们的机器学习模型是最佳拟合模型,因为av和pv之间的误差最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral analysis of Cupric oxide (CuO) and Graphene Oxide (GO) via machine learning techniques
Chemical graph theory has recently gained much attraction among researchers due to its extensive use in mathematical chemistry. In this research article, We have studied the spectral properties such as eigenvalues, energy and Estrada index of some chemical structures such as Cupric oxide (CuO) and Graphene Oxide (GO). We have computed the energy E(G)=i=0n|λi| and the other invariant Estrada index EE(G)=i=1neλi of the above mentioned graph structures and obtain the polynomial regression analysis using machine learning techniques. This approach permitted us to predict the spectral values more precisely and analyze the difference between the actual and predicted values. The actual values of energy and Estrada index is represented by Eav and EEav while the predicted values of energy and Estrada index is represented by Epv and EEpv, where av represents ”actual value” and pv represents ”predicted value”. We first use traditional method based on softwares and get the actual values (av) (see section 2). Then we perform machine learning techniques to generate a best fit model and get the predicted values (pv) of the energies and Estrada index of Cupric oxide CuO and Graphene Oxide GO by using the best fit second order polynomial for Energy and Estrada Index of CuO is obtained as E(CuO)=0.007m2+5.892mn+2.243m+2.169n0.365 and EE(CuO)=0.537+2.084m+2.084n+13.533mn, respectively. Similarly, the best fit second order polynomial for Energy and Estrada Index of GO is obtained as E(GO)=0.266+2.533m+2.598n+0.014m2+3.133mn+0.017n2 and EE(GO)=1.671+4.400m+4.440n+0.016m2+6.553mn+0.014n2, respectively. We have observed the difference between av and pv which shows our machine learning model is best fit model as the error between the av and pv is minimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信