先进的深度学习和数据增强技术在腰椎MRI分割中具有开创性的精度

Istiak Ahmed , Md. Tanzim Hossain , Md. Zahirul Islam Nahid , Kazi Shahriar Sanjid , Md. Shakib Shahariar Junayed , M. Monir Uddin , Mohammad Monirujjaman Khan
{"title":"先进的深度学习和数据增强技术在腰椎MRI分割中具有开创性的精度","authors":"Istiak Ahmed ,&nbsp;Md. Tanzim Hossain ,&nbsp;Md. Zahirul Islam Nahid ,&nbsp;Kazi Shahriar Sanjid ,&nbsp;Md. Shakib Shahariar Junayed ,&nbsp;M. Monir Uddin ,&nbsp;Mohammad Monirujjaman Khan","doi":"10.1016/j.mlwa.2025.100635","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an advanced approach to lumbar spine segmentation using deep learning techniques, focusing on addressing key challenges such as class imbalance and data preprocessing. Magnetic resonance imaging (MRI) scans of patients with low back pain are meticulously preprocessed to accurately represent three critical classes: vertebrae, spinal canal, and intervertebral discs (IVDs). By rectifying class inconsistencies in the data preprocessing stage, the fidelity of the training data is ensured. The modified U-Net model incorporates innovative architectural enhancements, including an upsample block with leaky Rectified Linear Units (ReLU) and Glorot uniform initializer, to mitigate common issues such as the dying ReLU problem and improve stability during training. Introducing a custom combined loss function effectively tackles class imbalance, significantly improving segmentation accuracy. Evaluation using a comprehensive suite of metrics showcases the superior performance of this approach, outperforming existing methods and advancing the current techniques in lumbar spine segmentation. These findings hold significant advancements for enhanced lumbar spine MRI and segmentation diagnostic accuracy.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"20 ","pages":"Article 100635"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pioneering precision in lumbar spine MRI segmentation with advanced deep learning and data enhancement\",\"authors\":\"Istiak Ahmed ,&nbsp;Md. Tanzim Hossain ,&nbsp;Md. Zahirul Islam Nahid ,&nbsp;Kazi Shahriar Sanjid ,&nbsp;Md. Shakib Shahariar Junayed ,&nbsp;M. Monir Uddin ,&nbsp;Mohammad Monirujjaman Khan\",\"doi\":\"10.1016/j.mlwa.2025.100635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an advanced approach to lumbar spine segmentation using deep learning techniques, focusing on addressing key challenges such as class imbalance and data preprocessing. Magnetic resonance imaging (MRI) scans of patients with low back pain are meticulously preprocessed to accurately represent three critical classes: vertebrae, spinal canal, and intervertebral discs (IVDs). By rectifying class inconsistencies in the data preprocessing stage, the fidelity of the training data is ensured. The modified U-Net model incorporates innovative architectural enhancements, including an upsample block with leaky Rectified Linear Units (ReLU) and Glorot uniform initializer, to mitigate common issues such as the dying ReLU problem and improve stability during training. Introducing a custom combined loss function effectively tackles class imbalance, significantly improving segmentation accuracy. Evaluation using a comprehensive suite of metrics showcases the superior performance of this approach, outperforming existing methods and advancing the current techniques in lumbar spine segmentation. These findings hold significant advancements for enhanced lumbar spine MRI and segmentation diagnostic accuracy.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"20 \",\"pages\":\"Article 100635\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827025000180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种使用深度学习技术进行腰椎分割的先进方法,重点解决了类不平衡和数据预处理等关键挑战。腰痛患者的磁共振成像(MRI)扫描经过精心预处理,以准确地代表三个关键类别:椎骨、椎管和椎间盘(ivd)。通过在数据预处理阶段纠正类不一致,保证了训练数据的保真度。改进后的U-Net模型结合了创新的架构增强,包括带有泄漏整流线性单元(ReLU)和gloot统一初始化器的上采样块,以缓解ReLU老化等常见问题,并提高训练期间的稳定性。引入自定义的组合损失函数,有效地解决了类不平衡问题,显著提高了分割精度。使用一套综合指标的评估显示了该方法的优越性能,优于现有方法,并推进了腰椎分割的当前技术。这些发现在增强腰椎MRI和分割诊断准确性方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pioneering precision in lumbar spine MRI segmentation with advanced deep learning and data enhancement
This study presents an advanced approach to lumbar spine segmentation using deep learning techniques, focusing on addressing key challenges such as class imbalance and data preprocessing. Magnetic resonance imaging (MRI) scans of patients with low back pain are meticulously preprocessed to accurately represent three critical classes: vertebrae, spinal canal, and intervertebral discs (IVDs). By rectifying class inconsistencies in the data preprocessing stage, the fidelity of the training data is ensured. The modified U-Net model incorporates innovative architectural enhancements, including an upsample block with leaky Rectified Linear Units (ReLU) and Glorot uniform initializer, to mitigate common issues such as the dying ReLU problem and improve stability during training. Introducing a custom combined loss function effectively tackles class imbalance, significantly improving segmentation accuracy. Evaluation using a comprehensive suite of metrics showcases the superior performance of this approach, outperforming existing methods and advancing the current techniques in lumbar spine segmentation. These findings hold significant advancements for enhanced lumbar spine MRI and segmentation diagnostic accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信