锰氧化物介导过氧乙酸活化过程的非自由基机制:活性金属与电子转移过程

IF 4.8 Q1 ENVIRONMENTAL SCIENCES
Xinyue Zhang, Zhichao Yang*, Hongchao Li* and Bingcai Pan, 
{"title":"锰氧化物介导过氧乙酸活化过程的非自由基机制:活性金属与电子转移过程","authors":"Xinyue Zhang,&nbsp;Zhichao Yang*,&nbsp;Hongchao Li* and Bingcai Pan,&nbsp;","doi":"10.1021/acsestwater.4c0114710.1021/acsestwater.4c01147","DOIUrl":null,"url":null,"abstract":"<p >Transition-metal oxide-mediated peroxide activation systems have been demonstrated to initiate selective degradation of pollutants, while the underlying mechanism remains unclear and sometimes controversial. In this study, we systematically explored the reactive species/pathways for pollutant degradation in the Mn oxide octahedron molecular sieve (OMS-2)-triggered peracetic acid (PAA) activation system. By separating PAA activation and pollutant oxidation processes using a sequential activation/oxidation system or galvanic oxidation system, we confirm that the OMS-2/PAA system follows the reactive metal species mechanism, where surface reactive Mn(IV) species, rather than Mn–PAA complexes, are primarily responsible for the nonradical oxidation of bisphenol A. OMS-2 shows varied peroxide-activating activities (i.e., catalase-like and peroxidase-like activities) toward different peroxides (i.e., H<sub>2</sub>O<sub>2</sub>, PAA, and persulfates), depending on the reactivity of surface reactive Mn(IV) species with those peroxides. In addition, the long-lived surface reactive Mn(IV) species exhibit excellent resistance to fluctuations in solution pH and interference from coexisting anions and natural organic matter. This study offers novel insights into the nonradical mechanism involved in Mn oxide-mediated peroxide activation processes.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 3","pages":"1406–1415 1406–1415"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying the Nonradical Mechanism in Mn Oxide-Mediated Peracetic Acid Activation Processes: Reactive Metal Species vs Electron Transfer Process\",\"authors\":\"Xinyue Zhang,&nbsp;Zhichao Yang*,&nbsp;Hongchao Li* and Bingcai Pan,&nbsp;\",\"doi\":\"10.1021/acsestwater.4c0114710.1021/acsestwater.4c01147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transition-metal oxide-mediated peroxide activation systems have been demonstrated to initiate selective degradation of pollutants, while the underlying mechanism remains unclear and sometimes controversial. In this study, we systematically explored the reactive species/pathways for pollutant degradation in the Mn oxide octahedron molecular sieve (OMS-2)-triggered peracetic acid (PAA) activation system. By separating PAA activation and pollutant oxidation processes using a sequential activation/oxidation system or galvanic oxidation system, we confirm that the OMS-2/PAA system follows the reactive metal species mechanism, where surface reactive Mn(IV) species, rather than Mn–PAA complexes, are primarily responsible for the nonradical oxidation of bisphenol A. OMS-2 shows varied peroxide-activating activities (i.e., catalase-like and peroxidase-like activities) toward different peroxides (i.e., H<sub>2</sub>O<sub>2</sub>, PAA, and persulfates), depending on the reactivity of surface reactive Mn(IV) species with those peroxides. In addition, the long-lived surface reactive Mn(IV) species exhibit excellent resistance to fluctuations in solution pH and interference from coexisting anions and natural organic matter. This study offers novel insights into the nonradical mechanism involved in Mn oxide-mediated peroxide activation processes.</p>\",\"PeriodicalId\":93847,\"journal\":{\"name\":\"ACS ES&T water\",\"volume\":\"5 3\",\"pages\":\"1406–1415 1406–1415\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestwater.4c01147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c01147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属氧化物介导的过氧化物活化系统已被证明可以启动污染物的选择性降解,但其潜在机制尚不清楚,有时还存在争议。在这项研究中,我们系统地探索了氧化锰八面体分子筛(OMS-2)触发的过氧乙酸(PAA)活化体系中污染物降解的活性物质/途径。通过使用顺序活化/氧化系统或电氧化系统分离PAA活化和污染物氧化过程,我们证实了OMS-2/PAA系统遵循活性金属机制,其中表面活性Mn(IV)物种,而不是Mn - PAA配合物,主要负责双酚a的非自由基氧化。H2O2, PAA和过硫酸盐),取决于表面活性Mn(IV)与这些过氧化物的反应活性。此外,长寿命的表面活性Mn(IV)物种对溶液pH波动和共存阴离子和天然有机物的干扰表现出优异的抵抗力。本研究为锰氧化物介导的过氧化物活化过程中涉及的非自由基机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identifying the Nonradical Mechanism in Mn Oxide-Mediated Peracetic Acid Activation Processes: Reactive Metal Species vs Electron Transfer Process

Identifying the Nonradical Mechanism in Mn Oxide-Mediated Peracetic Acid Activation Processes: Reactive Metal Species vs Electron Transfer Process

Transition-metal oxide-mediated peroxide activation systems have been demonstrated to initiate selective degradation of pollutants, while the underlying mechanism remains unclear and sometimes controversial. In this study, we systematically explored the reactive species/pathways for pollutant degradation in the Mn oxide octahedron molecular sieve (OMS-2)-triggered peracetic acid (PAA) activation system. By separating PAA activation and pollutant oxidation processes using a sequential activation/oxidation system or galvanic oxidation system, we confirm that the OMS-2/PAA system follows the reactive metal species mechanism, where surface reactive Mn(IV) species, rather than Mn–PAA complexes, are primarily responsible for the nonradical oxidation of bisphenol A. OMS-2 shows varied peroxide-activating activities (i.e., catalase-like and peroxidase-like activities) toward different peroxides (i.e., H2O2, PAA, and persulfates), depending on the reactivity of surface reactive Mn(IV) species with those peroxides. In addition, the long-lived surface reactive Mn(IV) species exhibit excellent resistance to fluctuations in solution pH and interference from coexisting anions and natural organic matter. This study offers novel insights into the nonradical mechanism involved in Mn oxide-mediated peroxide activation processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信