Kaushani Majumder;Sibi Raj B. Pillai;Satish Mulleti
{"title":"异构传感器的贪婪选择","authors":"Kaushani Majumder;Sibi Raj B. Pillai;Satish Mulleti","doi":"10.1109/TSP.2025.3549301","DOIUrl":null,"url":null,"abstract":"Simultaneous operation of all sensors in a large-scale sensor network is power-consuming and computationally expensive. Hence, it is desirable to select fewer sensors. A greedy algorithm is widely used for sensor selection in homogeneous networks with a theoretical worst-case performance of <inline-formula><tex-math>$\\boldsymbol{(\\mathbf{1-1}/\\mathbf{e})\\mathbf{\\approx 63}}$</tex-math></inline-formula>% of the optimal performance when optimizing submodular metrics. For heterogeneous sensor networks (HSNs) comprising multiple sets of sensors, most of the existing sensor selection methods optimize the performance constrained by a budget on the total value of the selected sensors. However, in many applications, the number of sensors to select from each set is known apriori and solutions are not well-explored. For this problem, we propose a joint greedy heterogeneous sensor selection algorithm. Theoretically, we show that the worst-case performance of the proposed algorithm is bounded to <inline-formula><tex-math>$50$</tex-math></inline-formula>% of the optimum for submodular cost metrics. In the special case of HSNs with two sensor networks, the performance guarantee can be improved to <inline-formula><tex-math>$63$</tex-math></inline-formula>% when the number of sensors to select from one set is much smaller than the other. To validate our results experimentally, we propose a submodular metric based on the frame potential measure that considers both the correlation among the sensor measurements and their heterogeneity. We prove theoretical bounds for the mean squared error of the solution when this performance metric is used. We validate our results through simulation experiments considering both linear and non-linear measurement models corrupted by additive noise and quantization errors. Our experiments show that the proposed algorithm results in <inline-formula><tex-math>$4 {\\boldsymbol{\\mathbf{-}}} 10$</tex-math></inline-formula> dB lower error than existing methods.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1394-1409"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greedy Selection for Heterogeneous Sensors\",\"authors\":\"Kaushani Majumder;Sibi Raj B. Pillai;Satish Mulleti\",\"doi\":\"10.1109/TSP.2025.3549301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous operation of all sensors in a large-scale sensor network is power-consuming and computationally expensive. Hence, it is desirable to select fewer sensors. A greedy algorithm is widely used for sensor selection in homogeneous networks with a theoretical worst-case performance of <inline-formula><tex-math>$\\\\boldsymbol{(\\\\mathbf{1-1}/\\\\mathbf{e})\\\\mathbf{\\\\approx 63}}$</tex-math></inline-formula>% of the optimal performance when optimizing submodular metrics. For heterogeneous sensor networks (HSNs) comprising multiple sets of sensors, most of the existing sensor selection methods optimize the performance constrained by a budget on the total value of the selected sensors. However, in many applications, the number of sensors to select from each set is known apriori and solutions are not well-explored. For this problem, we propose a joint greedy heterogeneous sensor selection algorithm. Theoretically, we show that the worst-case performance of the proposed algorithm is bounded to <inline-formula><tex-math>$50$</tex-math></inline-formula>% of the optimum for submodular cost metrics. In the special case of HSNs with two sensor networks, the performance guarantee can be improved to <inline-formula><tex-math>$63$</tex-math></inline-formula>% when the number of sensors to select from one set is much smaller than the other. To validate our results experimentally, we propose a submodular metric based on the frame potential measure that considers both the correlation among the sensor measurements and their heterogeneity. We prove theoretical bounds for the mean squared error of the solution when this performance metric is used. We validate our results through simulation experiments considering both linear and non-linear measurement models corrupted by additive noise and quantization errors. Our experiments show that the proposed algorithm results in <inline-formula><tex-math>$4 {\\\\boldsymbol{\\\\mathbf{-}}} 10$</tex-math></inline-formula> dB lower error than existing methods.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"1394-1409\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10924408/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10924408/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Simultaneous operation of all sensors in a large-scale sensor network is power-consuming and computationally expensive. Hence, it is desirable to select fewer sensors. A greedy algorithm is widely used for sensor selection in homogeneous networks with a theoretical worst-case performance of $\boldsymbol{(\mathbf{1-1}/\mathbf{e})\mathbf{\approx 63}}$% of the optimal performance when optimizing submodular metrics. For heterogeneous sensor networks (HSNs) comprising multiple sets of sensors, most of the existing sensor selection methods optimize the performance constrained by a budget on the total value of the selected sensors. However, in many applications, the number of sensors to select from each set is known apriori and solutions are not well-explored. For this problem, we propose a joint greedy heterogeneous sensor selection algorithm. Theoretically, we show that the worst-case performance of the proposed algorithm is bounded to $50$% of the optimum for submodular cost metrics. In the special case of HSNs with two sensor networks, the performance guarantee can be improved to $63$% when the number of sensors to select from one set is much smaller than the other. To validate our results experimentally, we propose a submodular metric based on the frame potential measure that considers both the correlation among the sensor measurements and their heterogeneity. We prove theoretical bounds for the mean squared error of the solution when this performance metric is used. We validate our results through simulation experiments considering both linear and non-linear measurement models corrupted by additive noise and quantization errors. Our experiments show that the proposed algorithm results in $4 {\boldsymbol{\mathbf{-}}} 10$ dB lower error than existing methods.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.