{"title":"SARS-CoV-2感染继发骨质疏松症的研究进展","authors":"Jinlong Wang, Yibai Xiong, Zhiqi Song, Yanhong Li, Ling Zhang, Chuan Qin","doi":"10.1002/ame2.12573","DOIUrl":null,"url":null,"abstract":"<p>The World Health Organization has declared that COVID-19 no longer constitutes a “public health emergency of international concern,” yet the long-term impact of SARS-CoV-2 infection on bone health continues to pose new challenges for global public health. In recent years, numerous animal model and clinical studies have revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to secondary osteoporosis. The mechanisms involved are related to the virus's direct effects on bone tissue, dysregulation of the body's inflammatory response, hypoxia, noncoding RNA imbalance, and metabolic abnormalities. Although these studies have unveiled the connection between SARS-CoV-2 infection and osteoporosis, current research is not comprehensive and in depth. Future studies are needed to evaluate the long-term effects of SARS-CoV-2 on bone density and metabolism, elucidate the specific mechanisms of pathogenesis, and explore potential interventions. This review aims to collate existing research literature on SARS-CoV-2 infection-induced secondary osteoporosis, summarize the underlying mechanisms, and provide direction for future research.</p>","PeriodicalId":93869,"journal":{"name":"Animal models and experimental medicine","volume":"8 5","pages":"829-841"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ame2.12573","citationCount":"0","resultStr":"{\"title\":\"Progress in research on osteoporosis secondary to SARS-CoV-2 infection\",\"authors\":\"Jinlong Wang, Yibai Xiong, Zhiqi Song, Yanhong Li, Ling Zhang, Chuan Qin\",\"doi\":\"10.1002/ame2.12573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The World Health Organization has declared that COVID-19 no longer constitutes a “public health emergency of international concern,” yet the long-term impact of SARS-CoV-2 infection on bone health continues to pose new challenges for global public health. In recent years, numerous animal model and clinical studies have revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to secondary osteoporosis. The mechanisms involved are related to the virus's direct effects on bone tissue, dysregulation of the body's inflammatory response, hypoxia, noncoding RNA imbalance, and metabolic abnormalities. Although these studies have unveiled the connection between SARS-CoV-2 infection and osteoporosis, current research is not comprehensive and in depth. Future studies are needed to evaluate the long-term effects of SARS-CoV-2 on bone density and metabolism, elucidate the specific mechanisms of pathogenesis, and explore potential interventions. This review aims to collate existing research literature on SARS-CoV-2 infection-induced secondary osteoporosis, summarize the underlying mechanisms, and provide direction for future research.</p>\",\"PeriodicalId\":93869,\"journal\":{\"name\":\"Animal models and experimental medicine\",\"volume\":\"8 5\",\"pages\":\"829-841\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ame2.12573\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal models and experimental medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ame2.12573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal models and experimental medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ame2.12573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
Progress in research on osteoporosis secondary to SARS-CoV-2 infection
The World Health Organization has declared that COVID-19 no longer constitutes a “public health emergency of international concern,” yet the long-term impact of SARS-CoV-2 infection on bone health continues to pose new challenges for global public health. In recent years, numerous animal model and clinical studies have revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to secondary osteoporosis. The mechanisms involved are related to the virus's direct effects on bone tissue, dysregulation of the body's inflammatory response, hypoxia, noncoding RNA imbalance, and metabolic abnormalities. Although these studies have unveiled the connection between SARS-CoV-2 infection and osteoporosis, current research is not comprehensive and in depth. Future studies are needed to evaluate the long-term effects of SARS-CoV-2 on bone density and metabolism, elucidate the specific mechanisms of pathogenesis, and explore potential interventions. This review aims to collate existing research literature on SARS-CoV-2 infection-induced secondary osteoporosis, summarize the underlying mechanisms, and provide direction for future research.