Anna Sternberg, Jennifer Lynne Borger, Mathilda Thies, Anja Matena, Mike Blueggel, Bianca E Kamba, Christine Beuck, Farnusch Kaschani, Markus Kaiser, Peter Bayer
{"title":"肌动蛋白结合脯氨酸异构酶Par17通过结构域间变构维持其底物选择性。","authors":"Anna Sternberg, Jennifer Lynne Borger, Mathilda Thies, Anja Matena, Mike Blueggel, Bianca E Kamba, Christine Beuck, Farnusch Kaschani, Markus Kaiser, Peter Bayer","doi":"10.1002/prot.26807","DOIUrl":null,"url":null,"abstract":"<p><p>The human peptidyl-prolyl-cis/trans isomerases (PPIases), Parvulin 14 and Parvulin 17, accelerate the cis/trans isomerization of Xaa-Pro moieties within protein sequences. By modulating the respective binding interfaces of their target proteins, they play a crucial role in determining the fate of their substrates within the cell. Although both enzymes share the same amino acid sequence, they have different cellular functions. This difference is due to a 25 residue N-terminal extension present in Par17 but absent in Par14. Using activity assays, NMR spectroscopy, and mass spectrometry, we demonstrate that the N-terminal extension of Par17 determines substrate selectivity by an intramolecular allosteric mechanism and exhibits a target-binding motif that interacts with actin.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Actin-Binding Prolyl-Isomerase Par17 Sustains Its Substrate Selectivity by Interdomain Allostery.\",\"authors\":\"Anna Sternberg, Jennifer Lynne Borger, Mathilda Thies, Anja Matena, Mike Blueggel, Bianca E Kamba, Christine Beuck, Farnusch Kaschani, Markus Kaiser, Peter Bayer\",\"doi\":\"10.1002/prot.26807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human peptidyl-prolyl-cis/trans isomerases (PPIases), Parvulin 14 and Parvulin 17, accelerate the cis/trans isomerization of Xaa-Pro moieties within protein sequences. By modulating the respective binding interfaces of their target proteins, they play a crucial role in determining the fate of their substrates within the cell. Although both enzymes share the same amino acid sequence, they have different cellular functions. This difference is due to a 25 residue N-terminal extension present in Par17 but absent in Par14. Using activity assays, NMR spectroscopy, and mass spectrometry, we demonstrate that the N-terminal extension of Par17 determines substrate selectivity by an intramolecular allosteric mechanism and exhibits a target-binding motif that interacts with actin.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26807\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26807","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Actin-Binding Prolyl-Isomerase Par17 Sustains Its Substrate Selectivity by Interdomain Allostery.
The human peptidyl-prolyl-cis/trans isomerases (PPIases), Parvulin 14 and Parvulin 17, accelerate the cis/trans isomerization of Xaa-Pro moieties within protein sequences. By modulating the respective binding interfaces of their target proteins, they play a crucial role in determining the fate of their substrates within the cell. Although both enzymes share the same amino acid sequence, they have different cellular functions. This difference is due to a 25 residue N-terminal extension present in Par17 but absent in Par14. Using activity assays, NMR spectroscopy, and mass spectrometry, we demonstrate that the N-terminal extension of Par17 determines substrate selectivity by an intramolecular allosteric mechanism and exhibits a target-binding motif that interacts with actin.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.