{"title":"基于DAA-UNet模型的胸部x线图像肺部分割。","authors":"Vivek Kumar Yadav, Jyoti Singhai","doi":"10.1007/s11517-025-03344-8","DOIUrl":null,"url":null,"abstract":"<p><p>Medical image segmentation is a critical aspect of medical image analysis, particularly in the realm of medical image processing. While the UNet architecture is widely acknowledged for its effectiveness in medical image segmentation, it falls short in fully harnessing inherent advantages and utilising contextual data efficiently. In response, this research introduces an architecture named Deep Atrous Attention UNet (DAA-UNet), incorporating the attention module and Atrous Spatial Pyramid Pooling (ASPP) module in UNet. The primary objective is to enhance both efficiency and accuracy in the segmentation of medical images, with a specific focus on chest X-ray (CXR) images. DAA-UNet combines the integral features of UNet, ASPP, and attention mechanisms. The addition of an attention block improves the segmentation process by prioritising features from the encoding layer to the decoding layers. Our evaluation employs a tuberculosis dataset to assess the performance of the proposed model. The validation results demonstrate an average accuracy of 97.15%, an average Intersection over Union (IoU) value of 92.37%, and an average Dice Coefficient (DC) value of 93.25%. Notably, both qualitative and quantitative assessments for lung segmentation produce better outcomes than UNet and other relevant selected architectures.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of lungs from chest X-ray images based on Deep Atrous Attention UNet (DAA-UNet) model.\",\"authors\":\"Vivek Kumar Yadav, Jyoti Singhai\",\"doi\":\"10.1007/s11517-025-03344-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical image segmentation is a critical aspect of medical image analysis, particularly in the realm of medical image processing. While the UNet architecture is widely acknowledged for its effectiveness in medical image segmentation, it falls short in fully harnessing inherent advantages and utilising contextual data efficiently. In response, this research introduces an architecture named Deep Atrous Attention UNet (DAA-UNet), incorporating the attention module and Atrous Spatial Pyramid Pooling (ASPP) module in UNet. The primary objective is to enhance both efficiency and accuracy in the segmentation of medical images, with a specific focus on chest X-ray (CXR) images. DAA-UNet combines the integral features of UNet, ASPP, and attention mechanisms. The addition of an attention block improves the segmentation process by prioritising features from the encoding layer to the decoding layers. Our evaluation employs a tuberculosis dataset to assess the performance of the proposed model. The validation results demonstrate an average accuracy of 97.15%, an average Intersection over Union (IoU) value of 92.37%, and an average Dice Coefficient (DC) value of 93.25%. Notably, both qualitative and quantitative assessments for lung segmentation produce better outcomes than UNet and other relevant selected architectures.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03344-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03344-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Segmentation of lungs from chest X-ray images based on Deep Atrous Attention UNet (DAA-UNet) model.
Medical image segmentation is a critical aspect of medical image analysis, particularly in the realm of medical image processing. While the UNet architecture is widely acknowledged for its effectiveness in medical image segmentation, it falls short in fully harnessing inherent advantages and utilising contextual data efficiently. In response, this research introduces an architecture named Deep Atrous Attention UNet (DAA-UNet), incorporating the attention module and Atrous Spatial Pyramid Pooling (ASPP) module in UNet. The primary objective is to enhance both efficiency and accuracy in the segmentation of medical images, with a specific focus on chest X-ray (CXR) images. DAA-UNet combines the integral features of UNet, ASPP, and attention mechanisms. The addition of an attention block improves the segmentation process by prioritising features from the encoding layer to the decoding layers. Our evaluation employs a tuberculosis dataset to assess the performance of the proposed model. The validation results demonstrate an average accuracy of 97.15%, an average Intersection over Union (IoU) value of 92.37%, and an average Dice Coefficient (DC) value of 93.25%. Notably, both qualitative and quantitative assessments for lung segmentation produce better outcomes than UNet and other relevant selected architectures.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).