药物自动化报告:阿片类药物管理工具。

Q3 Medicine
Dylan Turner, Paul Gottselig, Leland Sommer, Kelsey Dumont, Warren Berry, Casey Phillips
{"title":"药物自动化报告:阿片类药物管理工具。","authors":"Dylan Turner, Paul Gottselig, Leland Sommer, Kelsey Dumont, Warren Berry, Casey Phillips","doi":"10.5055/jom.0926","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop and implement a customized clinical decision support system (CDSS) in an under-resourced health region aimed at promoting appropriate and safe opioid prescribing.</p><p><strong>Design: </strong>The Pharmaceutical Automated Reporting (PAR) tool integrates inpatient prescription data from BDM Pharmacy (version 10) and categorizes patient information using predefined logic. It operates with Python (version 3.10) and Microsoft Excel®, functioning as decision trees. Nine risk factors (absence of naloxone prescription with an opioid prescription, naloxone administration, high-frequency opioid dosing, multiple opioids prescribed, concurrent benzodiazepine and opioid coprescribed, over 7 days of intravenous route opioid use, morphine equivalent dose received over or equal to 90, possible opioid agonist therapy, possible alcohol withdrawal therapy) are assessed through a decision matrix to classify patients for opioid-related risk.</p><p><strong>Results: </strong>Over 7 months, the PAR tool detected one opioid-related risk factor in 98.9 percent (n = 10,450) of patients prescribed an opioid and multiple risk factors in 62.4 percent (n = 6,590). The tool identified areas where data-driven interventions by the Opioid Stewardship Program could promote appropriate prescribing practices and will be used to track and promote stewardship interventions, inform policy change, and evaluate the impact on quality indicators.</p><p><strong>Conclusion: </strong>Small, resource-scarce health systems can use open-source programming methodologies to create an internal CDSS to assist in addressing opioid-related risk factors within their healthcare facilities.</p>","PeriodicalId":16601,"journal":{"name":"Journal of opioid management","volume":"21 1","pages":"11-15"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmaceutical Automated Reporting: An opioid stewardship tool.\",\"authors\":\"Dylan Turner, Paul Gottselig, Leland Sommer, Kelsey Dumont, Warren Berry, Casey Phillips\",\"doi\":\"10.5055/jom.0926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop and implement a customized clinical decision support system (CDSS) in an under-resourced health region aimed at promoting appropriate and safe opioid prescribing.</p><p><strong>Design: </strong>The Pharmaceutical Automated Reporting (PAR) tool integrates inpatient prescription data from BDM Pharmacy (version 10) and categorizes patient information using predefined logic. It operates with Python (version 3.10) and Microsoft Excel®, functioning as decision trees. Nine risk factors (absence of naloxone prescription with an opioid prescription, naloxone administration, high-frequency opioid dosing, multiple opioids prescribed, concurrent benzodiazepine and opioid coprescribed, over 7 days of intravenous route opioid use, morphine equivalent dose received over or equal to 90, possible opioid agonist therapy, possible alcohol withdrawal therapy) are assessed through a decision matrix to classify patients for opioid-related risk.</p><p><strong>Results: </strong>Over 7 months, the PAR tool detected one opioid-related risk factor in 98.9 percent (n = 10,450) of patients prescribed an opioid and multiple risk factors in 62.4 percent (n = 6,590). The tool identified areas where data-driven interventions by the Opioid Stewardship Program could promote appropriate prescribing practices and will be used to track and promote stewardship interventions, inform policy change, and evaluate the impact on quality indicators.</p><p><strong>Conclusion: </strong>Small, resource-scarce health systems can use open-source programming methodologies to create an internal CDSS to assist in addressing opioid-related risk factors within their healthcare facilities.</p>\",\"PeriodicalId\":16601,\"journal\":{\"name\":\"Journal of opioid management\",\"volume\":\"21 1\",\"pages\":\"11-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of opioid management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5055/jom.0926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of opioid management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5055/jom.0926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目的:在资源不足的卫生地区开发和实施定制的临床决策支持系统(CDSS),旨在促进适当和安全的阿片类药物处方。设计:Pharmaceutical Automated Reporting (PAR)工具集成了来自BDM Pharmacy (version 10)的住院患者处方数据,并使用预定义的逻辑对患者信息进行分类。它与Python(版本3.10)和Microsoft Excel®一起运行,作为决策树。通过决策矩阵评估9个危险因素(没有纳洛酮处方和阿片类药物处方、纳洛酮给药、阿片类药物高频给药、多种阿片类药物处方、苯二氮卓类药物和阿片类药物同时处方、静脉途径阿片类药物使用超过7天、吗啡等效剂量超过或等于90、可能的阿片类药物激动剂治疗、可能的酒精戒断治疗),对阿片类药物相关风险患者进行分类。结果:在7个月的时间里,PAR工具在98.9% (n = 10,450)的处方阿片类药物的患者中检测到一种阿片类药物相关的危险因素,在62.4% (n = 6,590)的患者中检测到多种危险因素。该工具确定了阿片类药物管理计划的数据驱动干预措施可以促进适当处方做法的领域,并将用于跟踪和促进管理干预措施,为政策变化提供信息,并评估对质量指标的影响。结论:小型、资源稀缺的卫生系统可以使用开源编程方法创建内部CDSS,以协助解决其卫生保健设施内与阿片类药物相关的风险因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pharmaceutical Automated Reporting: An opioid stewardship tool.

Objective: To develop and implement a customized clinical decision support system (CDSS) in an under-resourced health region aimed at promoting appropriate and safe opioid prescribing.

Design: The Pharmaceutical Automated Reporting (PAR) tool integrates inpatient prescription data from BDM Pharmacy (version 10) and categorizes patient information using predefined logic. It operates with Python (version 3.10) and Microsoft Excel®, functioning as decision trees. Nine risk factors (absence of naloxone prescription with an opioid prescription, naloxone administration, high-frequency opioid dosing, multiple opioids prescribed, concurrent benzodiazepine and opioid coprescribed, over 7 days of intravenous route opioid use, morphine equivalent dose received over or equal to 90, possible opioid agonist therapy, possible alcohol withdrawal therapy) are assessed through a decision matrix to classify patients for opioid-related risk.

Results: Over 7 months, the PAR tool detected one opioid-related risk factor in 98.9 percent (n = 10,450) of patients prescribed an opioid and multiple risk factors in 62.4 percent (n = 6,590). The tool identified areas where data-driven interventions by the Opioid Stewardship Program could promote appropriate prescribing practices and will be used to track and promote stewardship interventions, inform policy change, and evaluate the impact on quality indicators.

Conclusion: Small, resource-scarce health systems can use open-source programming methodologies to create an internal CDSS to assist in addressing opioid-related risk factors within their healthcare facilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of opioid management
Journal of opioid management Medicine-Anesthesiology and Pain Medicine
CiteScore
1.00
自引率
0.00%
发文量
54
期刊介绍: The Journal of Opioid Management deals with all aspects of opioids. From basic science, pre-clinical, clinical, abuse, compliance and addiction medicine, the journal provides and unbiased forum for researchers and clinicians to explore and manage the complexities of opioid prescription.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信