基于混合三重倒立摆模型和状态依赖间歇神经控制的人体矢状面姿态摇摆神经力学仿真。

IF 4.5 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Yongkun Zhao;Mingquan Zhang;Balint K. Hodossy;Jiatong Jiang;Masahiro Todoh;Dario Farina
{"title":"基于混合三重倒立摆模型和状态依赖间歇神经控制的人体矢状面姿态摇摆神经力学仿真。","authors":"Yongkun Zhao;Mingquan Zhang;Balint K. Hodossy;Jiatong Jiang;Masahiro Todoh;Dario Farina","doi":"10.1109/TBME.2024.3502169","DOIUrl":null,"url":null,"abstract":"<italic>Objective:</i> This study introduces a novel neuromechanical model that employs a hybrid triple inverted pendulum (HTIP) framework combined with state-dependent intermittent control to simulate human quiet stance in the sagittal plane. <italic>Methods:</i> The proposed neuromechanical model integrates the biomechanics of the ankle, knee, and hip joints, focusing on the stabilization of the body's center of mass (CoM) rather than controlling each joint individually. Unlike computational models that require precise joint control, the central nervous system maintains posture by simplifying neural control mechanisms. Specifically, the state-dependent control strategy activates neural feedback only as the CoM approaches the stability boundaries. <italic>Results:</i> Experimental validation against real-world data demonstrated that the model can accurately replicate natural postural sway patterns in the sagittal plane. <italic>Conclusion:</i> The model provides a computationally efficient mechanism and a realistic simulation of human posture control, addressing a long-standing challenge in neuromechanical modeling of human quiet stance. <italic>Significance:</i> This study enhances understanding and simulation capability offers significant new insights for developing targeted interventions for individuals with impairments in postural control.","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"72 4","pages":"1340-1353"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10758254","citationCount":"0","resultStr":"{\"title\":\"Neuromechanical Simulation of Human Postural Sway in the Sagittal Plane Based on a Hybrid Triple Inverted Pendulum Model and State-Dependent Intermittent Neural Control\",\"authors\":\"Yongkun Zhao;Mingquan Zhang;Balint K. Hodossy;Jiatong Jiang;Masahiro Todoh;Dario Farina\",\"doi\":\"10.1109/TBME.2024.3502169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Objective:</i> This study introduces a novel neuromechanical model that employs a hybrid triple inverted pendulum (HTIP) framework combined with state-dependent intermittent control to simulate human quiet stance in the sagittal plane. <italic>Methods:</i> The proposed neuromechanical model integrates the biomechanics of the ankle, knee, and hip joints, focusing on the stabilization of the body's center of mass (CoM) rather than controlling each joint individually. Unlike computational models that require precise joint control, the central nervous system maintains posture by simplifying neural control mechanisms. Specifically, the state-dependent control strategy activates neural feedback only as the CoM approaches the stability boundaries. <italic>Results:</i> Experimental validation against real-world data demonstrated that the model can accurately replicate natural postural sway patterns in the sagittal plane. <italic>Conclusion:</i> The model provides a computationally efficient mechanism and a realistic simulation of human posture control, addressing a long-standing challenge in neuromechanical modeling of human quiet stance. <italic>Significance:</i> This study enhances understanding and simulation capability offers significant new insights for developing targeted interventions for individuals with impairments in postural control.\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"72 4\",\"pages\":\"1340-1353\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10758254\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10758254/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10758254/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究引入了一种新的神经力学模型,该模型采用混合三重倒立摆(HTIP)框架结合状态依赖间歇控制来模拟人类在矢状面上的安静姿态。我们的模型整合了踝关节、膝关节和髋关节的生物力学,专注于身体重心(CoM)的稳定,而不是单独控制每个关节。与需要精确关节控制的计算模型不同,中枢神经系统通过简化神经控制机制来维持姿势。具体而言,状态相关控制策略仅在CoM接近稳定边界时激活神经反馈。我们的HTIP模型包含了这些生理机制,为姿态控制提供了一种高效的计算机制。针对真实世界数据的实验验证表明,我们的模型可以准确地复制矢状面上的自然姿势摆动模式,解决了人类安静站立的神经力学建模的长期挑战。这种增强的理解和模拟能力为为有姿势控制障碍的个体开发有针对性的干预措施提供了重要的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuromechanical Simulation of Human Postural Sway in the Sagittal Plane Based on a Hybrid Triple Inverted Pendulum Model and State-Dependent Intermittent Neural Control
Objective: This study introduces a novel neuromechanical model that employs a hybrid triple inverted pendulum (HTIP) framework combined with state-dependent intermittent control to simulate human quiet stance in the sagittal plane. Methods: The proposed neuromechanical model integrates the biomechanics of the ankle, knee, and hip joints, focusing on the stabilization of the body's center of mass (CoM) rather than controlling each joint individually. Unlike computational models that require precise joint control, the central nervous system maintains posture by simplifying neural control mechanisms. Specifically, the state-dependent control strategy activates neural feedback only as the CoM approaches the stability boundaries. Results: Experimental validation against real-world data demonstrated that the model can accurately replicate natural postural sway patterns in the sagittal plane. Conclusion: The model provides a computationally efficient mechanism and a realistic simulation of human posture control, addressing a long-standing challenge in neuromechanical modeling of human quiet stance. Significance: This study enhances understanding and simulation capability offers significant new insights for developing targeted interventions for individuals with impairments in postural control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信