磁驱动液体取样胶囊机器人的设计。

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Shuo Zhang, Shaohui Song, Xinkai Yu, Shuang Song, Lihai Zhang
{"title":"磁驱动液体取样胶囊机器人的设计。","authors":"Shuo Zhang, Shaohui Song, Xinkai Yu, Shuang Song, Lihai Zhang","doi":"10.1109/TBME.2025.3550179","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to introduce a biopsy capsule robot based on the negative pressure suction principle to achieve liquid sampling in the digestive tract.</p><p><strong>Methods: </strong>The proposed capsule robot is designed with a magnetic spring configuration. By controlling the direction of an external magnetic field, the suction port can be aligned with the target sampling area. The sampling operation can then be achieved by increasing the external field to start the magnetic spring and a negative pressure can be generated to achieve the liquid sampling. Moreover, a locking mechanism is designed to prevent the magnetic spring from retracting, ensuring that the collected liquid is not squeezed out.</p><p><strong>Results: </strong>The capsule robot prototype has dimensions of 16.3mm × 24.4mm. Both phantom and in-vitro experiments have been carried out. Results showed that it can sample liquids with viscosities ranging from 0.7mPa s to 200mPa s and absorb up to 0.24ml liquid. Additionally, the sealing of the capsule also meets clinical requirements.</p><p><strong>Conclusion: </strong>The experimental results indicate that the designed capsule robot can satisfy the clinical requirements for liquid sampling within the digestive tract.</p><p><strong>Significance: </strong>This study has designed and developed a micro capsule robot in the digestive tract, which can achieve safe and efficient liquid sampling operations. The proposed robot can benefit the clinical diagnosis of digestive diseases, especially in the small intestine.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Magnetic Actuated Capsule Robot for Liquid Sampling.\",\"authors\":\"Shuo Zhang, Shaohui Song, Xinkai Yu, Shuang Song, Lihai Zhang\",\"doi\":\"10.1109/TBME.2025.3550179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aims to introduce a biopsy capsule robot based on the negative pressure suction principle to achieve liquid sampling in the digestive tract.</p><p><strong>Methods: </strong>The proposed capsule robot is designed with a magnetic spring configuration. By controlling the direction of an external magnetic field, the suction port can be aligned with the target sampling area. The sampling operation can then be achieved by increasing the external field to start the magnetic spring and a negative pressure can be generated to achieve the liquid sampling. Moreover, a locking mechanism is designed to prevent the magnetic spring from retracting, ensuring that the collected liquid is not squeezed out.</p><p><strong>Results: </strong>The capsule robot prototype has dimensions of 16.3mm × 24.4mm. Both phantom and in-vitro experiments have been carried out. Results showed that it can sample liquids with viscosities ranging from 0.7mPa s to 200mPa s and absorb up to 0.24ml liquid. Additionally, the sealing of the capsule also meets clinical requirements.</p><p><strong>Conclusion: </strong>The experimental results indicate that the designed capsule robot can satisfy the clinical requirements for liquid sampling within the digestive tract.</p><p><strong>Significance: </strong>This study has designed and developed a micro capsule robot in the digestive tract, which can achieve safe and efficient liquid sampling operations. The proposed robot can benefit the clinical diagnosis of digestive diseases, especially in the small intestine.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2025.3550179\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3550179","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在介绍一种基于负压吸吸原理的活检胶囊机器人,实现消化道液体取样。方法:采用磁弹簧结构设计胶囊机器人。通过控制外部磁场的方向,可以使吸入口对准目标采样区域。然后通过增大外场启动磁弹簧,产生负压实现液体取样,从而实现取样操作。此外,还设计了锁紧机构,防止磁性弹簧缩回,确保收集的液体不被挤出。结果:胶囊机器人样机尺寸为16.3mm × 24.4mm。幻影和体外实验都进行了。结果表明,该仪器可对0.7mPa s ~ 200mPa s粘度范围内的液体进行取样,可吸附0.24ml液体。此外,胶囊的密封性也符合临床要求。结论:实验结果表明,所设计的胶囊机器人能够满足临床对消化道内液体取样的要求。意义:本研究设计并研制了一种消化道微型胶囊机器人,可以实现安全高效的液体取样操作。该机器人可用于消化道疾病的临床诊断,特别是小肠疾病的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Magnetic Actuated Capsule Robot for Liquid Sampling.

Objective: This study aims to introduce a biopsy capsule robot based on the negative pressure suction principle to achieve liquid sampling in the digestive tract.

Methods: The proposed capsule robot is designed with a magnetic spring configuration. By controlling the direction of an external magnetic field, the suction port can be aligned with the target sampling area. The sampling operation can then be achieved by increasing the external field to start the magnetic spring and a negative pressure can be generated to achieve the liquid sampling. Moreover, a locking mechanism is designed to prevent the magnetic spring from retracting, ensuring that the collected liquid is not squeezed out.

Results: The capsule robot prototype has dimensions of 16.3mm × 24.4mm. Both phantom and in-vitro experiments have been carried out. Results showed that it can sample liquids with viscosities ranging from 0.7mPa s to 200mPa s and absorb up to 0.24ml liquid. Additionally, the sealing of the capsule also meets clinical requirements.

Conclusion: The experimental results indicate that the designed capsule robot can satisfy the clinical requirements for liquid sampling within the digestive tract.

Significance: This study has designed and developed a micro capsule robot in the digestive tract, which can achieve safe and efficient liquid sampling operations. The proposed robot can benefit the clinical diagnosis of digestive diseases, especially in the small intestine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信