复杂时间流的敏感性:相变、哈密顿结构和微分几何。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0245642
Dirk Lebiedz, Johannes Poppe
{"title":"复杂时间流的敏感性:相变、哈密顿结构和微分几何。","authors":"Dirk Lebiedz, Johannes Poppe","doi":"10.1063/5.0245642","DOIUrl":null,"url":null,"abstract":"<p><p>Reminiscent of physical phase transition separatrices divides the phase space of dynamical systems with multiple equilibria into regions of distinct flow behavior and asymptotics. We introduce complex time in order to study corresponding Riemann surface solutions of holomorphic and meromorphic flows, explicitly solve their sensitivity differential equation, and identify a related Hamiltonian structure and an associated geometry in order to study separatrix properties. As an application, we analyze the complex-time Newton flow of Riemann's ξ-function on the basis of a compactly convergent polynomial approximation of its Riemann surface solution defined as zero set of polynomials, e.g., algebraic curves over C (in the complex projective plane, respectively), that is closely related to a complex-valued Hamiltonian system. Its geometric properties might contain information on the global separatrix structure and the root location of ξ and ξ'.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivities in complex-time flows: Phase transitions, Hamiltonian structure, and differential geometry.\",\"authors\":\"Dirk Lebiedz, Johannes Poppe\",\"doi\":\"10.1063/5.0245642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reminiscent of physical phase transition separatrices divides the phase space of dynamical systems with multiple equilibria into regions of distinct flow behavior and asymptotics. We introduce complex time in order to study corresponding Riemann surface solutions of holomorphic and meromorphic flows, explicitly solve their sensitivity differential equation, and identify a related Hamiltonian structure and an associated geometry in order to study separatrix properties. As an application, we analyze the complex-time Newton flow of Riemann's ξ-function on the basis of a compactly convergent polynomial approximation of its Riemann surface solution defined as zero set of polynomials, e.g., algebraic curves over C (in the complex projective plane, respectively), that is closely related to a complex-valued Hamiltonian system. Its geometric properties might contain information on the global separatrix structure and the root location of ξ and ξ'.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0245642\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0245642","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

使人联想到物理相变分离,将具有多个平衡的动力系统的相空间划分为具有不同流动行为和渐近性的区域。我们引入复时间来研究全纯和亚纯流动的Riemann曲面解,显式地求解它们的灵敏度微分方程,并识别相关的哈密顿结构和相关几何来研究分离矩阵性质。作为一个应用,我们分析了黎曼ξ函数的复时间牛顿流,该函数的黎曼曲面解被定义为多项式的零集,例如,C上的代数曲线(分别在复射影平面上),这与复值哈密顿系统密切相关。它的几何性质可能包含关于全局分离矩阵结构和ξ和ξ'的根位置的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivities in complex-time flows: Phase transitions, Hamiltonian structure, and differential geometry.

Reminiscent of physical phase transition separatrices divides the phase space of dynamical systems with multiple equilibria into regions of distinct flow behavior and asymptotics. We introduce complex time in order to study corresponding Riemann surface solutions of holomorphic and meromorphic flows, explicitly solve their sensitivity differential equation, and identify a related Hamiltonian structure and an associated geometry in order to study separatrix properties. As an application, we analyze the complex-time Newton flow of Riemann's ξ-function on the basis of a compactly convergent polynomial approximation of its Riemann surface solution defined as zero set of polynomials, e.g., algebraic curves over C (in the complex projective plane, respectively), that is closely related to a complex-valued Hamiltonian system. Its geometric properties might contain information on the global separatrix structure and the root location of ξ and ξ'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信