包含比率依赖Ivlev函数响应的具有复杂网络和随机建模的离散捕食-捕食模型的复杂动力学。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0248855
Md Mutakabbir Khan, Md Jasim Uddin, Dewan Fahim, Saiful Islam, S M Sohel Rana, Abdul Qadeer Khan, Nehad Ali Shah
{"title":"包含比率依赖Ivlev函数响应的具有复杂网络和随机建模的离散捕食-捕食模型的复杂动力学。","authors":"Md Mutakabbir Khan, Md Jasim Uddin, Dewan Fahim, Saiful Islam, S M Sohel Rana, Abdul Qadeer Khan, Nehad Ali Shah","doi":"10.1063/5.0248855","DOIUrl":null,"url":null,"abstract":"<p><p>This research examines the predator-prey model's discrete-time dynamics regulated by a ratio-dependent Ivlev functional response. Our comprehensive algebraic study demonstrates that the system undergoes both period-doubling bifurcation and Neimark-Sacker bifurcation in the positive quadrant of the phase space. We provide a theoretical framework to understand these bifurcations by employing the center manifold theorem and bifurcation theory. To substantiate our theoretical findings, we conduct numerical simulations that clearly illustrate chaotic phenomena, including phase portraits, period-11 orbits, invariant closed circles, and attractive chaotic sets. In addition, we compute Lyapunov exponents to validate the system's chaotic characteristics. Moreover, we illustrate the practical implementation of chaos management through state feedback and Ott-Grebogi-Yorke approach to stabilize chaotic trajectories around an unstable equilibrium point. Bifurcations are analyzed in a discrete predator-prey model within a coupled network. Numerical simulations reveal that chaotic behavior arises in complex dynamical networks when the coupling strength parameter reaches a critical threshold. Furthermore, we employed the Euler-Maruyama approach for stochastic simulations to investigate our system under environmental uncertainty, analyzing realistic cases to encompass a variety of environmental conditions. All theoretical results concerning stability, bifurcation, and chaotic transitions in the coupled network are corroborated by numerical simulations.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex dynamics of a discrete prey-predator model with complex network and stochastic modeling incorporating a ratio-dependent Ivlev functional response.\",\"authors\":\"Md Mutakabbir Khan, Md Jasim Uddin, Dewan Fahim, Saiful Islam, S M Sohel Rana, Abdul Qadeer Khan, Nehad Ali Shah\",\"doi\":\"10.1063/5.0248855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research examines the predator-prey model's discrete-time dynamics regulated by a ratio-dependent Ivlev functional response. Our comprehensive algebraic study demonstrates that the system undergoes both period-doubling bifurcation and Neimark-Sacker bifurcation in the positive quadrant of the phase space. We provide a theoretical framework to understand these bifurcations by employing the center manifold theorem and bifurcation theory. To substantiate our theoretical findings, we conduct numerical simulations that clearly illustrate chaotic phenomena, including phase portraits, period-11 orbits, invariant closed circles, and attractive chaotic sets. In addition, we compute Lyapunov exponents to validate the system's chaotic characteristics. Moreover, we illustrate the practical implementation of chaos management through state feedback and Ott-Grebogi-Yorke approach to stabilize chaotic trajectories around an unstable equilibrium point. Bifurcations are analyzed in a discrete predator-prey model within a coupled network. Numerical simulations reveal that chaotic behavior arises in complex dynamical networks when the coupling strength parameter reaches a critical threshold. Furthermore, we employed the Euler-Maruyama approach for stochastic simulations to investigate our system under environmental uncertainty, analyzing realistic cases to encompass a variety of environmental conditions. All theoretical results concerning stability, bifurcation, and chaotic transitions in the coupled network are corroborated by numerical simulations.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0248855\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0248855","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了由比例依赖的Ivlev功能响应调节的捕食者-猎物模型的离散时间动力学。综合代数研究表明,该系统在相空间正象限存在倍周期分岔和neimmark - sacker分岔。我们利用中心流形定理和分岔理论提供了一个理解这些分岔的理论框架。为了证实我们的理论发现,我们进行了数值模拟,清楚地说明了混沌现象,包括相位肖像,周期11轨道,不变闭圆和吸引混沌集。此外,我们计算李雅普诺夫指数来验证系统的混沌特性。此外,我们还说明了混沌管理的实际实现,通过状态反馈和ot - grebogi - yorke方法来稳定不稳定平衡点周围的混沌轨迹。分析了耦合网络中离散捕食者-猎物模型的分岔问题。数值模拟表明,当耦合强度参数达到临界阈值时,复杂动态网络会出现混沌行为。此外,我们采用Euler-Maruyama方法进行随机模拟,以研究环境不确定性下的系统,分析包括各种环境条件的现实案例。所有关于耦合网络稳定性、分岔和混沌跃迁的理论结果都得到了数值模拟的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex dynamics of a discrete prey-predator model with complex network and stochastic modeling incorporating a ratio-dependent Ivlev functional response.

This research examines the predator-prey model's discrete-time dynamics regulated by a ratio-dependent Ivlev functional response. Our comprehensive algebraic study demonstrates that the system undergoes both period-doubling bifurcation and Neimark-Sacker bifurcation in the positive quadrant of the phase space. We provide a theoretical framework to understand these bifurcations by employing the center manifold theorem and bifurcation theory. To substantiate our theoretical findings, we conduct numerical simulations that clearly illustrate chaotic phenomena, including phase portraits, period-11 orbits, invariant closed circles, and attractive chaotic sets. In addition, we compute Lyapunov exponents to validate the system's chaotic characteristics. Moreover, we illustrate the practical implementation of chaos management through state feedback and Ott-Grebogi-Yorke approach to stabilize chaotic trajectories around an unstable equilibrium point. Bifurcations are analyzed in a discrete predator-prey model within a coupled network. Numerical simulations reveal that chaotic behavior arises in complex dynamical networks when the coupling strength parameter reaches a critical threshold. Furthermore, we employed the Euler-Maruyama approach for stochastic simulations to investigate our system under environmental uncertainty, analyzing realistic cases to encompass a variety of environmental conditions. All theoretical results concerning stability, bifurcation, and chaotic transitions in the coupled network are corroborated by numerical simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信