人体肠道菌群和尿酸代谢:基因、代谢物和饮食。

IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Lei Sun, Min Zhang, Jianxin Zhao, Wei Chen, Gang Wang
{"title":"人体肠道菌群和尿酸代谢:基因、代谢物和饮食。","authors":"Lei Sun, Min Zhang, Jianxin Zhao, Wei Chen, Gang Wang","doi":"10.1080/10408398.2025.2475238","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperuricemia (HUA), characterized by an excessive production of uric acid (UA), poses a significant risk for various metabolic disorders and affects over one billion individuals globally. The intricate interplay between the gut microbiota and dietary constituents plays a pivotal role in maintaining UA homeostasis. Abnormal consumption of specific dietary components such as purines, fructose, or aberrant expression of urate transporters can disrupt UA balance, precipitating HUA and gout. The gut microbiota exerts profound influence over human UA regulation, particularly in the presence of specific gene clusters. Individuals with HUA often exhibit gut dysbiosis, characterized by a reduction in bacteria producing short-chain fatty acids or those capable of degrading UA, alongside an increase in opportunistic pathogens. Dietary constituents and their microbial metabolites engage in intricate interactions with the gut microbiota to modulate HUA, regulating inflammatory responses, suppressing xanthine oxidase activity to curtail UA production, and enhancing UA excretion via urate transporters. This comprehensive review delineates the pivotal role of dietary factors in UA metabolism and HUA, elucidating the underlying mechanisms of microbial regulation. By unraveling the intricate connections between the gut microbiota and UA metabolism, it offers valuable dietary guidance for individuals grappling with HUA.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-21"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The human gut microbiota and uric acid metabolism: genes, metabolites, and diet.\",\"authors\":\"Lei Sun, Min Zhang, Jianxin Zhao, Wei Chen, Gang Wang\",\"doi\":\"10.1080/10408398.2025.2475238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperuricemia (HUA), characterized by an excessive production of uric acid (UA), poses a significant risk for various metabolic disorders and affects over one billion individuals globally. The intricate interplay between the gut microbiota and dietary constituents plays a pivotal role in maintaining UA homeostasis. Abnormal consumption of specific dietary components such as purines, fructose, or aberrant expression of urate transporters can disrupt UA balance, precipitating HUA and gout. The gut microbiota exerts profound influence over human UA regulation, particularly in the presence of specific gene clusters. Individuals with HUA often exhibit gut dysbiosis, characterized by a reduction in bacteria producing short-chain fatty acids or those capable of degrading UA, alongside an increase in opportunistic pathogens. Dietary constituents and their microbial metabolites engage in intricate interactions with the gut microbiota to modulate HUA, regulating inflammatory responses, suppressing xanthine oxidase activity to curtail UA production, and enhancing UA excretion via urate transporters. This comprehensive review delineates the pivotal role of dietary factors in UA metabolism and HUA, elucidating the underlying mechanisms of microbial regulation. By unraveling the intricate connections between the gut microbiota and UA metabolism, it offers valuable dietary guidance for individuals grappling with HUA.</p>\",\"PeriodicalId\":10767,\"journal\":{\"name\":\"Critical reviews in food science and nutrition\",\"volume\":\" \",\"pages\":\"1-21\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in food science and nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10408398.2025.2475238\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2475238","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高尿酸血症(HUA)以尿酸(UA)的过量产生为特征,对各种代谢紊乱构成重大风险,影响全球超过10亿人。肠道微生物群和膳食成分之间复杂的相互作用在维持UA稳态中起着关键作用。特定膳食成分如嘌呤、果糖的异常摄入或尿酸转运蛋白的异常表达可破坏尿酸平衡,诱发尿酸和痛风。肠道微生物群对人类UA的调节具有深远的影响,特别是在特定基因簇的存在下。HUA患者通常表现出肠道生态失调,其特征是产生短链脂肪酸或能够降解UA的细菌减少,同时机会致病菌增加。膳食成分及其微生物代谢物与肠道微生物群相互作用,调节HUA,调节炎症反应,抑制黄嘌呤氧化酶活性,减少UA的产生,并通过尿酸转运体促进UA的排泄。本文综述了膳食因子在UA代谢和HUA中的关键作用,阐明了微生物调控的潜在机制。通过揭示肠道微生物群和UA代谢之间的复杂联系,它为患有UA的个体提供了有价值的饮食指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The human gut microbiota and uric acid metabolism: genes, metabolites, and diet.

Hyperuricemia (HUA), characterized by an excessive production of uric acid (UA), poses a significant risk for various metabolic disorders and affects over one billion individuals globally. The intricate interplay between the gut microbiota and dietary constituents plays a pivotal role in maintaining UA homeostasis. Abnormal consumption of specific dietary components such as purines, fructose, or aberrant expression of urate transporters can disrupt UA balance, precipitating HUA and gout. The gut microbiota exerts profound influence over human UA regulation, particularly in the presence of specific gene clusters. Individuals with HUA often exhibit gut dysbiosis, characterized by a reduction in bacteria producing short-chain fatty acids or those capable of degrading UA, alongside an increase in opportunistic pathogens. Dietary constituents and their microbial metabolites engage in intricate interactions with the gut microbiota to modulate HUA, regulating inflammatory responses, suppressing xanthine oxidase activity to curtail UA production, and enhancing UA excretion via urate transporters. This comprehensive review delineates the pivotal role of dietary factors in UA metabolism and HUA, elucidating the underlying mechanisms of microbial regulation. By unraveling the intricate connections between the gut microbiota and UA metabolism, it offers valuable dietary guidance for individuals grappling with HUA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.60
自引率
4.90%
发文量
600
审稿时长
7.5 months
期刊介绍: Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition. With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信