Jie Xu, Qiongwen Xue, Aizhen Xiong, Yilin Chen, Xunjiang Wang, Xing Yan, Deqing Ruan, Yumeng Zhang, Zhengtao Wang, Lili Ding, Li Yang
{"title":"绿原酸通过调节SIRT1/FXR信号通路减轻吡咯利西啶生物碱诱导的肝损伤。","authors":"Jie Xu, Qiongwen Xue, Aizhen Xiong, Yilin Chen, Xunjiang Wang, Xing Yan, Deqing Ruan, Yumeng Zhang, Zhengtao Wang, Lili Ding, Li Yang","doi":"10.1186/s13020-025-01077-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pyrrolizidine alkaloids (PAs), recognized globally for their hepatotoxic properties, significantly contribute to liver damage through an imbalance in bile acid homeostasis. Addressing this imbalance is crucial for therapeutic interventions in PA-related liver injuries. Chlorogenic acid (Cga), a phenolic compound derived from medicinal plants, has demonstrated hepato-protective effects across a spectrum of liver disorders. The specific influence and underlying mechanisms by which Cga mitigates PA-induced liver damage have not been clearly defined.</p><p><strong>Materials and methods: </strong>To explore the protective effects of Cga against acute PA toxicity, a murine model was established. The influence of Cga on bile acid metabolism was confirmed through a variety of molecular biology techniques. These included RNA sequencing, western blotting, and immunoprecipitation, along with quantitative analyses of bile acid concentrations.</p><p><strong>Results: </strong>Our findings indicate that Cga enhances sirtuin 1 (SIRT1) activation and increases farnesoid X receptor (FXR) signaling, which are crucial for maintaining bile acid balance in PA-induced hepatic injury. When mice subjected to PA-induced hepatic injury were treated with SIRT1 inhibitors alongside Cga, the hepatoprotective effects of Cga were significantly reduced. In Fxr-KO mice, the ability of Cga to mitigate liver damage induced by PAs was substantially reduced, which underscores the role of the SIRT1/FXR signaling axis in mediating the protective effects of Cga.</p><p><strong>Conclusion: </strong>Our research suggests that Cga can serve as an effective treatment for PA-mediated hepatotoxicity. It appears that influencing the SIRT1/FXR signaling pathway might provide an innovative pharmacological approach to address liver damage caused by PAs.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"34"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899315/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chlorogenic acid attenuates pyrrolizidine alkaloid-induced liver injury through modulation of the SIRT1/FXR signaling pathway.\",\"authors\":\"Jie Xu, Qiongwen Xue, Aizhen Xiong, Yilin Chen, Xunjiang Wang, Xing Yan, Deqing Ruan, Yumeng Zhang, Zhengtao Wang, Lili Ding, Li Yang\",\"doi\":\"10.1186/s13020-025-01077-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pyrrolizidine alkaloids (PAs), recognized globally for their hepatotoxic properties, significantly contribute to liver damage through an imbalance in bile acid homeostasis. Addressing this imbalance is crucial for therapeutic interventions in PA-related liver injuries. Chlorogenic acid (Cga), a phenolic compound derived from medicinal plants, has demonstrated hepato-protective effects across a spectrum of liver disorders. The specific influence and underlying mechanisms by which Cga mitigates PA-induced liver damage have not been clearly defined.</p><p><strong>Materials and methods: </strong>To explore the protective effects of Cga against acute PA toxicity, a murine model was established. The influence of Cga on bile acid metabolism was confirmed through a variety of molecular biology techniques. These included RNA sequencing, western blotting, and immunoprecipitation, along with quantitative analyses of bile acid concentrations.</p><p><strong>Results: </strong>Our findings indicate that Cga enhances sirtuin 1 (SIRT1) activation and increases farnesoid X receptor (FXR) signaling, which are crucial for maintaining bile acid balance in PA-induced hepatic injury. When mice subjected to PA-induced hepatic injury were treated with SIRT1 inhibitors alongside Cga, the hepatoprotective effects of Cga were significantly reduced. In Fxr-KO mice, the ability of Cga to mitigate liver damage induced by PAs was substantially reduced, which underscores the role of the SIRT1/FXR signaling axis in mediating the protective effects of Cga.</p><p><strong>Conclusion: </strong>Our research suggests that Cga can serve as an effective treatment for PA-mediated hepatotoxicity. It appears that influencing the SIRT1/FXR signaling pathway might provide an innovative pharmacological approach to address liver damage caused by PAs.</p>\",\"PeriodicalId\":10266,\"journal\":{\"name\":\"Chinese Medicine\",\"volume\":\"20 1\",\"pages\":\"34\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899315/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13020-025-01077-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-025-01077-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
Chlorogenic acid attenuates pyrrolizidine alkaloid-induced liver injury through modulation of the SIRT1/FXR signaling pathway.
Background: Pyrrolizidine alkaloids (PAs), recognized globally for their hepatotoxic properties, significantly contribute to liver damage through an imbalance in bile acid homeostasis. Addressing this imbalance is crucial for therapeutic interventions in PA-related liver injuries. Chlorogenic acid (Cga), a phenolic compound derived from medicinal plants, has demonstrated hepato-protective effects across a spectrum of liver disorders. The specific influence and underlying mechanisms by which Cga mitigates PA-induced liver damage have not been clearly defined.
Materials and methods: To explore the protective effects of Cga against acute PA toxicity, a murine model was established. The influence of Cga on bile acid metabolism was confirmed through a variety of molecular biology techniques. These included RNA sequencing, western blotting, and immunoprecipitation, along with quantitative analyses of bile acid concentrations.
Results: Our findings indicate that Cga enhances sirtuin 1 (SIRT1) activation and increases farnesoid X receptor (FXR) signaling, which are crucial for maintaining bile acid balance in PA-induced hepatic injury. When mice subjected to PA-induced hepatic injury were treated with SIRT1 inhibitors alongside Cga, the hepatoprotective effects of Cga were significantly reduced. In Fxr-KO mice, the ability of Cga to mitigate liver damage induced by PAs was substantially reduced, which underscores the role of the SIRT1/FXR signaling axis in mediating the protective effects of Cga.
Conclusion: Our research suggests that Cga can serve as an effective treatment for PA-mediated hepatotoxicity. It appears that influencing the SIRT1/FXR signaling pathway might provide an innovative pharmacological approach to address liver damage caused by PAs.
Chinese MedicineINTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍:
Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine.
Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies.
Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.