Juan Liang, Peng Zhai, Guohua Cheng, Jinlong Han, Xiang Song
{"title":"n -乙酰转移酶10通过介导乳酸脱氢酶A的n4 -乙酰胞苷修饰促进胃癌进展","authors":"Juan Liang, Peng Zhai, Guohua Cheng, Jinlong Han, Xiang Song","doi":"10.1002/jbt.70227","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The N4-acetylcytidine (ac4C) modification, which is catalyzed by NAT10, represents a significant posttranscriptional modification of mRNA in multiple cancers. However, the significance of this modification in gastric cancer (GC) progression remains unclear. To evaluate the potential of differential NAT10 expression in GC, RT-qPCR and western blot were employed. Dot blot and acRIP were utilized for total ac4C and <i>LDHA</i> mRNA ac4C detection. Subsequently, the effects of NAT10 on GC cell viability and glycolysis were assessed by Cell Counting Kit-8 and glycolysis-related indicator detection Kits. Furthermore, rescue experiments and mice xenograft experiments were conducted to investigate the mechanism underlying the NAT10/LDHA signaling axis in GC. This study identified upregulated NAT10 and ac4C levels in GC. Knockdown of NAT10 led to inhibited cell viability and glycolysis. Additionally, NAT10 directly bound to <i>LDHA</i> mRNA. NAT10 silencing decreased the expression and stability of <i>LDHA</i> mRNA, as well as its ac4C modification level. Interestingly, LDHA overexpression partially reversed the effects of NAT10 knockdown on cell viability and glycolysis. Eventually, the oncogenic effect of NAT10/ac4C/LDHA axis was confirmed in xenograft experiments. NAT10 promoted the GC progression by mediating the ac4C modification of <i>LDHA</i> mRNA, which could serve as a potential therapeutic target for GC.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-Acetyltransferase 10 Promotes Gastric Cancer Progression by Mediating the N4-Acetylcytidine Modification of Lactate Dehydrogenase A\",\"authors\":\"Juan Liang, Peng Zhai, Guohua Cheng, Jinlong Han, Xiang Song\",\"doi\":\"10.1002/jbt.70227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The N4-acetylcytidine (ac4C) modification, which is catalyzed by NAT10, represents a significant posttranscriptional modification of mRNA in multiple cancers. However, the significance of this modification in gastric cancer (GC) progression remains unclear. To evaluate the potential of differential NAT10 expression in GC, RT-qPCR and western blot were employed. Dot blot and acRIP were utilized for total ac4C and <i>LDHA</i> mRNA ac4C detection. Subsequently, the effects of NAT10 on GC cell viability and glycolysis were assessed by Cell Counting Kit-8 and glycolysis-related indicator detection Kits. Furthermore, rescue experiments and mice xenograft experiments were conducted to investigate the mechanism underlying the NAT10/LDHA signaling axis in GC. This study identified upregulated NAT10 and ac4C levels in GC. Knockdown of NAT10 led to inhibited cell viability and glycolysis. Additionally, NAT10 directly bound to <i>LDHA</i> mRNA. NAT10 silencing decreased the expression and stability of <i>LDHA</i> mRNA, as well as its ac4C modification level. Interestingly, LDHA overexpression partially reversed the effects of NAT10 knockdown on cell viability and glycolysis. Eventually, the oncogenic effect of NAT10/ac4C/LDHA axis was confirmed in xenograft experiments. NAT10 promoted the GC progression by mediating the ac4C modification of <i>LDHA</i> mRNA, which could serve as a potential therapeutic target for GC.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 3\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70227\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70227","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
N-Acetyltransferase 10 Promotes Gastric Cancer Progression by Mediating the N4-Acetylcytidine Modification of Lactate Dehydrogenase A
The N4-acetylcytidine (ac4C) modification, which is catalyzed by NAT10, represents a significant posttranscriptional modification of mRNA in multiple cancers. However, the significance of this modification in gastric cancer (GC) progression remains unclear. To evaluate the potential of differential NAT10 expression in GC, RT-qPCR and western blot were employed. Dot blot and acRIP were utilized for total ac4C and LDHA mRNA ac4C detection. Subsequently, the effects of NAT10 on GC cell viability and glycolysis were assessed by Cell Counting Kit-8 and glycolysis-related indicator detection Kits. Furthermore, rescue experiments and mice xenograft experiments were conducted to investigate the mechanism underlying the NAT10/LDHA signaling axis in GC. This study identified upregulated NAT10 and ac4C levels in GC. Knockdown of NAT10 led to inhibited cell viability and glycolysis. Additionally, NAT10 directly bound to LDHA mRNA. NAT10 silencing decreased the expression and stability of LDHA mRNA, as well as its ac4C modification level. Interestingly, LDHA overexpression partially reversed the effects of NAT10 knockdown on cell viability and glycolysis. Eventually, the oncogenic effect of NAT10/ac4C/LDHA axis was confirmed in xenograft experiments. NAT10 promoted the GC progression by mediating the ac4C modification of LDHA mRNA, which could serve as a potential therapeutic target for GC.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.