X T X $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{X} $$和X T Y的快速基于分区的中心和缩放交叉验证 $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{Y} $$

IF 2.3 4区 化学 Q1 SOCIAL WORK
Ole-Christian Galbo Engstrøm, Martin Holm Jensen
{"title":"X T X $$ {\\mathbf{X}}^{\\mathbf{T}}\\mathbf{X} $$和X T Y的快速基于分区的中心和缩放交叉验证 $$ {\\mathbf{X}}^{\\mathbf{T}}\\mathbf{Y} $$","authors":"Ole-Christian Galbo Engstrøm,&nbsp;Martin Holm Jensen","doi":"10.1002/cem.70008","DOIUrl":null,"url":null,"abstract":"<p>We present algorithms that substantially accelerate partition-based cross-validation for machine learning models that require matrix products <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msup>\n <mi>X</mi>\n </mrow>\n <annotation>$$ {\\mathbf{X}}^{\\mathbf{T}}\\mathbf{X} $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msup>\n <mi>Y</mi>\n </mrow>\n <annotation>$$ {\\mathbf{X}}^{\\mathbf{T}}\\mathbf{Y} $$</annotation>\n </semantics></math>. Our algorithms have applications in model selection for, for example, principal component analysis (PCA), principal component regression (PCR), ridge regression (RR), ordinary least squares (OLS), and partial least squares (PLS). Our algorithms support all combinations of column-wise centering and scaling of <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation>$$ \\mathbf{X} $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n </mrow>\n <annotation>$$ \\mathbf{Y} $$</annotation>\n </semantics></math>, and we demonstrate in our accompanying implementation that this adds only a manageable, practical constant over efficient variants without preprocessing. We prove the correctness of our algorithms under a fold-based partitioning scheme and show that the running time is independent of the number of folds; that is, they have the same time complexity as that of computing <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msup>\n <mi>X</mi>\n </mrow>\n <annotation>$$ {\\mathbf{X}}^{\\mathbf{T}}\\mathbf{X} $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msup>\n <mi>Y</mi>\n </mrow>\n <annotation>$$ {\\mathbf{X}}^{\\mathbf{T}}\\mathbf{Y} $$</annotation>\n </semantics></math> and space complexity equivalent to storing <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>Y</mi>\n <mo>,</mo>\n <mspace></mspace>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msup>\n <mi>X</mi>\n </mrow>\n <annotation>$$ \\mathbf{X},\\mathbf{Y},{\\mathbf{X}}^{\\mathbf{T}}\\mathbf{X} $$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msup>\n <mi>Y</mi>\n </mrow>\n <annotation>$$ {\\mathbf{X}}^{\\mathbf{T}}\\mathbf{Y} $$</annotation>\n </semantics></math>. Importantly, unlike alternatives found in the literature, we avoid data leakage due to preprocessing. We achieve these results by eliminating redundant computations in the overlap between training partitions. Concretely, we show how to manipulate <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msup>\n <mi>X</mi>\n </mrow>\n <annotation>$$ {\\mathbf{X}}^{\\mathbf{T}}\\mathbf{X} $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msup>\n <mi>Y</mi>\n </mrow>\n <annotation>$$ {\\mathbf{X}}^{\\mathbf{T}}\\mathbf{Y} $$</annotation>\n </semantics></math> using only samples from the validation partition to obtain the preprocessed training partition-wise <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msup>\n <mi>X</mi>\n </mrow>\n <annotation>$$ {\\mathbf{X}}^{\\mathbf{T}}\\mathbf{X} $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msup>\n <mi>Y</mi>\n </mrow>\n <annotation>$$ {\\mathbf{X}}^{\\mathbf{T}}\\mathbf{Y} $$</annotation>\n </semantics></math>. To our knowledge, we are the first to derive correct and efficient cross-validation algorithms for any of the 16 combinations of column-wise centering and scaling, for which we also prove only 12 give distinct matrix products.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.70008","citationCount":"0","resultStr":"{\"title\":\"Fast Partition-Based Cross-Validation With Centering and Scaling for \\n \\n \\n \\n \\n X\\n \\n \\n T\\n \\n \\n X\\n \\n $$ {\\\\mathbf{X}}^{\\\\mathbf{T}}\\\\mathbf{X} $$\\n and \\n \\n \\n \\n \\n X\\n \\n \\n T\\n \\n \\n Y\\n \\n $$ {\\\\mathbf{X}}^{\\\\mathbf{T}}\\\\mathbf{Y} $$\",\"authors\":\"Ole-Christian Galbo Engstrøm,&nbsp;Martin Holm Jensen\",\"doi\":\"10.1002/cem.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present algorithms that substantially accelerate partition-based cross-validation for machine learning models that require matrix products <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msup>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathbf{X}}^{\\\\mathbf{T}}\\\\mathbf{X} $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msup>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathbf{X}}^{\\\\mathbf{T}}\\\\mathbf{Y} $$</annotation>\\n </semantics></math>. Our algorithms have applications in model selection for, for example, principal component analysis (PCA), principal component regression (PCR), ridge regression (RR), ordinary least squares (OLS), and partial least squares (PLS). Our algorithms support all combinations of column-wise centering and scaling of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$$ \\\\mathbf{X} $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$$ \\\\mathbf{Y} $$</annotation>\\n </semantics></math>, and we demonstrate in our accompanying implementation that this adds only a manageable, practical constant over efficient variants without preprocessing. We prove the correctness of our algorithms under a fold-based partitioning scheme and show that the running time is independent of the number of folds; that is, they have the same time complexity as that of computing <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msup>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathbf{X}}^{\\\\mathbf{T}}\\\\mathbf{X} $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msup>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathbf{X}}^{\\\\mathbf{T}}\\\\mathbf{Y} $$</annotation>\\n </semantics></math> and space complexity equivalent to storing <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>Y</mi>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msup>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msup>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$$ \\\\mathbf{X},\\\\mathbf{Y},{\\\\mathbf{X}}^{\\\\mathbf{T}}\\\\mathbf{X} $$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msup>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathbf{X}}^{\\\\mathbf{T}}\\\\mathbf{Y} $$</annotation>\\n </semantics></math>. Importantly, unlike alternatives found in the literature, we avoid data leakage due to preprocessing. We achieve these results by eliminating redundant computations in the overlap between training partitions. Concretely, we show how to manipulate <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msup>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathbf{X}}^{\\\\mathbf{T}}\\\\mathbf{X} $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msup>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathbf{X}}^{\\\\mathbf{T}}\\\\mathbf{Y} $$</annotation>\\n </semantics></math> using only samples from the validation partition to obtain the preprocessed training partition-wise <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msup>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathbf{X}}^{\\\\mathbf{T}}\\\\mathbf{X} $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msup>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathbf{X}}^{\\\\mathbf{T}}\\\\mathbf{Y} $$</annotation>\\n </semantics></math>. To our knowledge, we are the first to derive correct and efficient cross-validation algorithms for any of the 16 combinations of column-wise centering and scaling, for which we also prove only 12 give distinct matrix products.</p>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"39 3\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.70008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.70008\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.70008","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

具体来说,我们将展示如何操作X T X $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{X} $$和XT Y $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{Y} $$只使用来自验证分区的样本来获得预处理的训练分区X TX $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{X} $$和X T Y $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{Y} $$。据我们所知,我们是第一个为列对齐和缩放的16种组合中的任何一种导出正确和有效的交叉验证算法的人,我们也证明了只有12种给出不同的矩阵乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fast Partition-Based Cross-Validation With Centering and Scaling for 
         
            
               
                  
                     X
                  
                  
                     T
                  
               
               X
            
            $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{X} $$
          and 
         
            
               
                  
                     X
                  
                  
                     T
                  
               
               Y
            
            $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{Y} $$

Fast Partition-Based Cross-Validation With Centering and Scaling for X T X $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{X} $$ and X T Y $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{Y} $$

We present algorithms that substantially accelerate partition-based cross-validation for machine learning models that require matrix products X T X $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{X} $$ and X T Y $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{Y} $$ . Our algorithms have applications in model selection for, for example, principal component analysis (PCA), principal component regression (PCR), ridge regression (RR), ordinary least squares (OLS), and partial least squares (PLS). Our algorithms support all combinations of column-wise centering and scaling of X $$ \mathbf{X} $$ and Y $$ \mathbf{Y} $$ , and we demonstrate in our accompanying implementation that this adds only a manageable, practical constant over efficient variants without preprocessing. We prove the correctness of our algorithms under a fold-based partitioning scheme and show that the running time is independent of the number of folds; that is, they have the same time complexity as that of computing X T X $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{X} $$ and X T Y $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{Y} $$ and space complexity equivalent to storing X , Y , X T X $$ \mathbf{X},\mathbf{Y},{\mathbf{X}}^{\mathbf{T}}\mathbf{X} $$ , and X T Y $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{Y} $$ . Importantly, unlike alternatives found in the literature, we avoid data leakage due to preprocessing. We achieve these results by eliminating redundant computations in the overlap between training partitions. Concretely, we show how to manipulate X T X $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{X} $$ and X T Y $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{Y} $$ using only samples from the validation partition to obtain the preprocessed training partition-wise X T X $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{X} $$ and X T Y $$ {\mathbf{X}}^{\mathbf{T}}\mathbf{Y} $$ . To our knowledge, we are the first to derive correct and efficient cross-validation algorithms for any of the 16 combinations of column-wise centering and scaling, for which we also prove only 12 give distinct matrix products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信