Mohd Ali, Mehboob Ali, Mubashir Hussain, Deepika Koundal
{"title":"生成对抗网络(gan)用于医学图像处理:最新进展","authors":"Mohd Ali, Mehboob Ali, Mubashir Hussain, Deepika Koundal","doi":"10.1007/s11831-024-10174-8","DOIUrl":null,"url":null,"abstract":"<div><p>Generative Adversarial Networks (GANs) constitute an advanced category of deep learning models that have significantly transformed the domain of generative modelling. They demonstrate a profound capability to produce realistic and high-quality synthetic data across various domains. Recently, GANs have also emerged as a powerful and innovative approach in medical image processing. Numerous scholarly investigations consistently highlight the superiority of GAN-based methodologies in this context. The generation of realistic synthetic images aims to advance segmentation precision, augment image quality, and facilitate multimodal analysis. These enhancements significantly bolster the analytical capabilities of medical professionals, leading to more precise diagnostic evaluations and the formulation of personalized treatment plans, thereby contributing to improved patient prognosis. In this work, we rigorously review the latest advancements in the application of Generative Adversarial Networks (GANs) within the domain of medical imaging, encompassing research published between 2018 and 2024. The corpus of literature selected for this review is derived from the most relevant and authoritative databases, including Elsevier, Springer, IEEE Xplore, and Google Scholar, among others. This review rigorously evaluates scholarly publications employing Generative Adversarial Networks (GANs) for the synthesis and generation of medical images, segmentation of medical imaging data, image-to-image translation in medical contexts, and denoising or reconstruction of medical imagery. The findings of this review present a thorough synthesis of contemporary applications of Generative Adversarial Networks (GANs) in the domain of medical imaging. This investigation serves as a prospective reference in the realm of GAN utilization for medical image processing, offering guidance and insights for current and future research endeavors.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 2","pages":"1185 - 1198"},"PeriodicalIF":9.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Adversarial Networks (GANs) for Medical Image Processing: Recent Advancements\",\"authors\":\"Mohd Ali, Mehboob Ali, Mubashir Hussain, Deepika Koundal\",\"doi\":\"10.1007/s11831-024-10174-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Generative Adversarial Networks (GANs) constitute an advanced category of deep learning models that have significantly transformed the domain of generative modelling. They demonstrate a profound capability to produce realistic and high-quality synthetic data across various domains. Recently, GANs have also emerged as a powerful and innovative approach in medical image processing. Numerous scholarly investigations consistently highlight the superiority of GAN-based methodologies in this context. The generation of realistic synthetic images aims to advance segmentation precision, augment image quality, and facilitate multimodal analysis. These enhancements significantly bolster the analytical capabilities of medical professionals, leading to more precise diagnostic evaluations and the formulation of personalized treatment plans, thereby contributing to improved patient prognosis. In this work, we rigorously review the latest advancements in the application of Generative Adversarial Networks (GANs) within the domain of medical imaging, encompassing research published between 2018 and 2024. The corpus of literature selected for this review is derived from the most relevant and authoritative databases, including Elsevier, Springer, IEEE Xplore, and Google Scholar, among others. This review rigorously evaluates scholarly publications employing Generative Adversarial Networks (GANs) for the synthesis and generation of medical images, segmentation of medical imaging data, image-to-image translation in medical contexts, and denoising or reconstruction of medical imagery. The findings of this review present a thorough synthesis of contemporary applications of Generative Adversarial Networks (GANs) in the domain of medical imaging. This investigation serves as a prospective reference in the realm of GAN utilization for medical image processing, offering guidance and insights for current and future research endeavors.</p></div>\",\"PeriodicalId\":55473,\"journal\":{\"name\":\"Archives of Computational Methods in Engineering\",\"volume\":\"32 2\",\"pages\":\"1185 - 1198\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Computational Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11831-024-10174-8\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-024-10174-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Generative Adversarial Networks (GANs) for Medical Image Processing: Recent Advancements
Generative Adversarial Networks (GANs) constitute an advanced category of deep learning models that have significantly transformed the domain of generative modelling. They demonstrate a profound capability to produce realistic and high-quality synthetic data across various domains. Recently, GANs have also emerged as a powerful and innovative approach in medical image processing. Numerous scholarly investigations consistently highlight the superiority of GAN-based methodologies in this context. The generation of realistic synthetic images aims to advance segmentation precision, augment image quality, and facilitate multimodal analysis. These enhancements significantly bolster the analytical capabilities of medical professionals, leading to more precise diagnostic evaluations and the formulation of personalized treatment plans, thereby contributing to improved patient prognosis. In this work, we rigorously review the latest advancements in the application of Generative Adversarial Networks (GANs) within the domain of medical imaging, encompassing research published between 2018 and 2024. The corpus of literature selected for this review is derived from the most relevant and authoritative databases, including Elsevier, Springer, IEEE Xplore, and Google Scholar, among others. This review rigorously evaluates scholarly publications employing Generative Adversarial Networks (GANs) for the synthesis and generation of medical images, segmentation of medical imaging data, image-to-image translation in medical contexts, and denoising or reconstruction of medical imagery. The findings of this review present a thorough synthesis of contemporary applications of Generative Adversarial Networks (GANs) in the domain of medical imaging. This investigation serves as a prospective reference in the realm of GAN utilization for medical image processing, offering guidance and insights for current and future research endeavors.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.