Maike Eckhoff, Kerstin L. Bublitz and Jonny Proppe
{"title":"揭示二氧化碳反应与数据驱动的方法†","authors":"Maike Eckhoff, Kerstin L. Bublitz and Jonny Proppe","doi":"10.1039/D5DD00020C","DOIUrl":null,"url":null,"abstract":"<p >Carbon dioxide is a versatile C1 building block in organic synthesis. Understanding its reactivity is crucial for predicting reaction outcomes and identifying suitable substrates for the creation of value-added chemicals and drugs. A recent study [Li <em>et al.</em>, <em>J. Am. Chem. Soc.</em>, 2020, <strong>142</strong>, 8383] estimated the reactivity of CO<small><sub>2</sub></small> in the form of Mayr's electrophilicity parameter <em>E</em> on the basis of a single carboxylation reaction. The disagreement between experiment (<em>E</em> = −16.3) and computation (<em>E</em> = −11.4) corresponds to a deviation of up to ten orders of magnitude in bimolecular rate constants of carboxylation reactions according to the Mayr–Patz equation, log <em>k</em> = <em>s</em><small><sub>N</sub></small>(<em>E</em> + <em>N</em>). Here, we introduce a data-driven approach incorporating supervised learning, quantum chemistry, and uncertainty quantification to resolve this discrepancy. The dataset used for reducing the uncertainty in <em>E</em>(CO<small><sub>2</sub></small>) represents 15 carboxylation reactions in DMSO. However, experimental data is only available for one of these reactions. To ensure reliable predictions, we selected a training set composed of this and 19 additional reactions comprising heteroallenes other than CO<small><sub>2</sub></small> for which experimental data is available. With the new data-driven protocol, we can narrow down the electrophilicity of carbon dioxide to <em>E</em>(CO<small><sub>2</sub></small>) = −14.6(5) with 95% confidence, and suggest an electrophile-specific sensitivity parameter <em>s</em><small><sub>E</sub></small>(CO<small><sub>2</sub></small>) = 0.81(6), resulting in an extended reactivity equation, log <em>k</em> = <em>s</em><small><sub>E</sub></small><em>s</em><small><sub>N</sub></small>(<em>E</em> + <em>N</em>) [Mayr, <em>Tetrahedron</em>, 2015, <strong>71</strong>, 5095].</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 3","pages":" 868-878"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00020c?page=search","citationCount":"0","resultStr":"{\"title\":\"Unveiling CO2 reactivity with data-driven methods†\",\"authors\":\"Maike Eckhoff, Kerstin L. Bublitz and Jonny Proppe\",\"doi\":\"10.1039/D5DD00020C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Carbon dioxide is a versatile C1 building block in organic synthesis. Understanding its reactivity is crucial for predicting reaction outcomes and identifying suitable substrates for the creation of value-added chemicals and drugs. A recent study [Li <em>et al.</em>, <em>J. Am. Chem. Soc.</em>, 2020, <strong>142</strong>, 8383] estimated the reactivity of CO<small><sub>2</sub></small> in the form of Mayr's electrophilicity parameter <em>E</em> on the basis of a single carboxylation reaction. The disagreement between experiment (<em>E</em> = −16.3) and computation (<em>E</em> = −11.4) corresponds to a deviation of up to ten orders of magnitude in bimolecular rate constants of carboxylation reactions according to the Mayr–Patz equation, log <em>k</em> = <em>s</em><small><sub>N</sub></small>(<em>E</em> + <em>N</em>). Here, we introduce a data-driven approach incorporating supervised learning, quantum chemistry, and uncertainty quantification to resolve this discrepancy. The dataset used for reducing the uncertainty in <em>E</em>(CO<small><sub>2</sub></small>) represents 15 carboxylation reactions in DMSO. However, experimental data is only available for one of these reactions. To ensure reliable predictions, we selected a training set composed of this and 19 additional reactions comprising heteroallenes other than CO<small><sub>2</sub></small> for which experimental data is available. With the new data-driven protocol, we can narrow down the electrophilicity of carbon dioxide to <em>E</em>(CO<small><sub>2</sub></small>) = −14.6(5) with 95% confidence, and suggest an electrophile-specific sensitivity parameter <em>s</em><small><sub>E</sub></small>(CO<small><sub>2</sub></small>) = 0.81(6), resulting in an extended reactivity equation, log <em>k</em> = <em>s</em><small><sub>E</sub></small><em>s</em><small><sub>N</sub></small>(<em>E</em> + <em>N</em>) [Mayr, <em>Tetrahedron</em>, 2015, <strong>71</strong>, 5095].</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 3\",\"pages\":\" 868-878\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00020c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00020c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00020c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在有机合成中,二氧化碳是一种用途广泛的碳原子。了解其反应性对于预测反应结果和确定合适的底物以创造增值化学品和药物至关重要。最近的一项研究[Li et al., J. Am.]化学。Soc。[j] ., 2020, 142, 8383]在单次羧基化反应的基础上,以Mayr亲电性参数E的形式估算CO2的反应性。实验(E =−16.3)和计算(E =−11.4)之间的差异对应于根据mayer - patz方程log k = sN(E + N),羧基化反应的双分子速率常数的偏差高达10个数量级。在这里,我们引入了一种结合监督学习、量子化学和不确定性量化的数据驱动方法来解决这一差异。用于降低E(CO2)不确定度的数据集代表DMSO中的15个羧基化反应。然而,实验数据只适用于其中一种反应。为了确保可靠的预测,我们选择了一个训练集,该训练集由该反应和19个包含二氧化碳以外的杂烯的其他反应组成,这些反应的实验数据是可用的。使用新的数据驱动协议,我们可以将二氧化碳的亲电性缩小到E(CO2) = - 14.6(5),可信度为95%,并提出亲电性特异性灵敏度参数sE(CO2) = 0.81(6),从而得到扩展的反应性方程,log k = semn (E + N) [Mayr, Tetrahedron, 2015, 71, 5095]。
Unveiling CO2 reactivity with data-driven methods†
Carbon dioxide is a versatile C1 building block in organic synthesis. Understanding its reactivity is crucial for predicting reaction outcomes and identifying suitable substrates for the creation of value-added chemicals and drugs. A recent study [Li et al., J. Am. Chem. Soc., 2020, 142, 8383] estimated the reactivity of CO2 in the form of Mayr's electrophilicity parameter E on the basis of a single carboxylation reaction. The disagreement between experiment (E = −16.3) and computation (E = −11.4) corresponds to a deviation of up to ten orders of magnitude in bimolecular rate constants of carboxylation reactions according to the Mayr–Patz equation, log k = sN(E + N). Here, we introduce a data-driven approach incorporating supervised learning, quantum chemistry, and uncertainty quantification to resolve this discrepancy. The dataset used for reducing the uncertainty in E(CO2) represents 15 carboxylation reactions in DMSO. However, experimental data is only available for one of these reactions. To ensure reliable predictions, we selected a training set composed of this and 19 additional reactions comprising heteroallenes other than CO2 for which experimental data is available. With the new data-driven protocol, we can narrow down the electrophilicity of carbon dioxide to E(CO2) = −14.6(5) with 95% confidence, and suggest an electrophile-specific sensitivity parameter sE(CO2) = 0.81(6), resulting in an extended reactivity equation, log k = sEsN(E + N) [Mayr, Tetrahedron, 2015, 71, 5095].