希尔伯特空间中的分数阶傅里叶变换

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yu Zhang;Bing-Zhao Li
{"title":"希尔伯特空间中的分数阶傅里叶变换","authors":"Yu Zhang;Bing-Zhao Li","doi":"10.1109/TSIPN.2025.3540714","DOIUrl":null,"url":null,"abstract":"Graph signal processing (GSP) leverages the inherent signal structure within graphs to extract high-dimensional data without relying on translation invariance. It has emerged as a crucial tool across multiple fields, including learning and processing of various networks, data analysis, and image processing. In this paper, we introduce the graph fractional Fourier transform in Hilbert space (HGFRFT), which provides additional fractional analysis tools for generalized GSP by extending Hilbert space and vertex domain Fourier analysis to fractional order. First, we establish that the proposed HGFRFT extends traditional GSP, accommodates graphs on continuous domains, and facilitates joint time-vertex domain transform while adhering to critical properties such as additivity, commutativity, and invertibility. Second, to process generalized graph signals in the fractional domain, we explore the theory behind filtering and sampling of signals in the fractional domain. Finally, our simulations and numerical experiments substantiate the advantages and enhancements yielded by the HGFRFT.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"11 ","pages":"242-257"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Graph Fractional Fourier Transform in Hilbert Space\",\"authors\":\"Yu Zhang;Bing-Zhao Li\",\"doi\":\"10.1109/TSIPN.2025.3540714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph signal processing (GSP) leverages the inherent signal structure within graphs to extract high-dimensional data without relying on translation invariance. It has emerged as a crucial tool across multiple fields, including learning and processing of various networks, data analysis, and image processing. In this paper, we introduce the graph fractional Fourier transform in Hilbert space (HGFRFT), which provides additional fractional analysis tools for generalized GSP by extending Hilbert space and vertex domain Fourier analysis to fractional order. First, we establish that the proposed HGFRFT extends traditional GSP, accommodates graphs on continuous domains, and facilitates joint time-vertex domain transform while adhering to critical properties such as additivity, commutativity, and invertibility. Second, to process generalized graph signals in the fractional domain, we explore the theory behind filtering and sampling of signals in the fractional domain. Finally, our simulations and numerical experiments substantiate the advantages and enhancements yielded by the HGFRFT.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"11 \",\"pages\":\"242-257\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10884789/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10884789/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

图信号处理(GSP)利用图中固有的信号结构来提取高维数据,而不依赖于平移不变性。它已经成为跨多个领域的关键工具,包括各种网络的学习和处理、数据分析和图像处理。本文引入希尔伯特空间中的图分数阶傅里叶变换(HGFRFT),通过将希尔伯特空间和顶点域傅里叶分析扩展到分数阶,为广义GSP提供了额外的分数阶分析工具。首先,我们证明了所提出的HGFRFT扩展了传统的GSP,在连续域上容纳图,并且在坚持可加性、交换性和可逆性等关键性质的同时,促进了联合时间-顶点域变换。其次,为了处理分数阶域的广义图信号,我们探索了分数阶域信号滤波和采样的理论。最后,通过仿真和数值实验验证了HGFRFT的优点和增强效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Graph Fractional Fourier Transform in Hilbert Space
Graph signal processing (GSP) leverages the inherent signal structure within graphs to extract high-dimensional data without relying on translation invariance. It has emerged as a crucial tool across multiple fields, including learning and processing of various networks, data analysis, and image processing. In this paper, we introduce the graph fractional Fourier transform in Hilbert space (HGFRFT), which provides additional fractional analysis tools for generalized GSP by extending Hilbert space and vertex domain Fourier analysis to fractional order. First, we establish that the proposed HGFRFT extends traditional GSP, accommodates graphs on continuous domains, and facilitates joint time-vertex domain transform while adhering to critical properties such as additivity, commutativity, and invertibility. Second, to process generalized graph signals in the fractional domain, we explore the theory behind filtering and sampling of signals in the fractional domain. Finally, our simulations and numerical experiments substantiate the advantages and enhancements yielded by the HGFRFT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal and Information Processing over Networks
IEEE Transactions on Signal and Information Processing over Networks Computer Science-Computer Networks and Communications
CiteScore
5.80
自引率
12.50%
发文量
56
期刊介绍: The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信