草图多视图子空间聚类

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Sai Kiran Kadambari, Sundeep Prabhakar Chepuri
{"title":"草图多视图子空间聚类","authors":"Sai Kiran Kadambari,&nbsp;Sundeep Prabhakar Chepuri","doi":"10.1016/j.sigpro.2025.109948","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on the multi-view subspace clustering (MvSC) problem, where the task is to cluster the data points given multi-view data. Even though the existing MvSC methods perform well, they incur high computation costs. In this work, we aim to reduce the computation cost involved in MvSC using the tools from randomized linear algebra. We propose three MvSC algorithms assuming that the available multi-view data admit a linear or non-linear subspace representation and propose efficient solvers based on a coordinate descent algorithm. The proposed methods are computationally efficient and incur a lower computation cost than the existing methods. We theoretically evaluate the proposed methods in terms of representation error as a function of the sketching dimension. Finally, we demonstrate the efficacy of the proposed method on various synthetic and real-world datasets.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"234 ","pages":"Article 109948"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sketched multi-view subspace clustering\",\"authors\":\"Sai Kiran Kadambari,&nbsp;Sundeep Prabhakar Chepuri\",\"doi\":\"10.1016/j.sigpro.2025.109948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we focus on the multi-view subspace clustering (MvSC) problem, where the task is to cluster the data points given multi-view data. Even though the existing MvSC methods perform well, they incur high computation costs. In this work, we aim to reduce the computation cost involved in MvSC using the tools from randomized linear algebra. We propose three MvSC algorithms assuming that the available multi-view data admit a linear or non-linear subspace representation and propose efficient solvers based on a coordinate descent algorithm. The proposed methods are computationally efficient and incur a lower computation cost than the existing methods. We theoretically evaluate the proposed methods in terms of representation error as a function of the sketching dimension. Finally, we demonstrate the efficacy of the proposed method on various synthetic and real-world datasets.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"234 \",\"pages\":\"Article 109948\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168425000623\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425000623","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究多视图子空间聚类(MvSC)问题,其任务是对给定的多视图数据点进行聚类。尽管现有的MvSC方法性能良好,但其计算成本较高。在这项工作中,我们的目标是使用随机线性代数的工具来降低MvSC所涉及的计算成本。我们提出了三种MvSC算法,假设可用的多视图数据承认线性或非线性子空间表示,并提出了基于坐标下降算法的有效求解器。与现有方法相比,所提出的方法计算效率高,计算成本低。我们从理论上评价所提出的方法的表示误差作为一个函数的草图尺寸。最后,我们证明了该方法在各种合成数据集和真实数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sketched multi-view subspace clustering
In this paper, we focus on the multi-view subspace clustering (MvSC) problem, where the task is to cluster the data points given multi-view data. Even though the existing MvSC methods perform well, they incur high computation costs. In this work, we aim to reduce the computation cost involved in MvSC using the tools from randomized linear algebra. We propose three MvSC algorithms assuming that the available multi-view data admit a linear or non-linear subspace representation and propose efficient solvers based on a coordinate descent algorithm. The proposed methods are computationally efficient and incur a lower computation cost than the existing methods. We theoretically evaluate the proposed methods in terms of representation error as a function of the sketching dimension. Finally, we demonstrate the efficacy of the proposed method on various synthetic and real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信