Yuanlin Chen , Huan Li , Wenting Jiang , Majid Ghaderi , Adi Maulana , Liming Ouyang , Kun Liu
{"title":"琅洼山铁矿成因:黄铁矿和磁铁矿地球化学约束及原位Rb-Sr测年","authors":"Yuanlin Chen , Huan Li , Wenting Jiang , Majid Ghaderi , Adi Maulana , Liming Ouyang , Kun Liu","doi":"10.1016/j.chemer.2025.126284","DOIUrl":null,"url":null,"abstract":"<div><div>The Langwashan Fe deposit, with 80 million tons of proven iron ore reserves, is located in the eastern portion of the Tianshan orogenic belt, NW China. Previous research carried out detailed geological, geochemical, and geophysical studies on the deposit, while there are still different views on the ore genesis. In this study, electron probe micro-analysis and laser ablation (multi-collector) inductively coupled plasma mass spectrometry analysis of variable minerals in ore samples were conducted. Based on ore texture, in-situ biotite Rb<img>Sr dating, magnetite and pyrite composition, and mineral assemblage, the Langwashan Fe mineralization has been divided into two metallogenic periods: volcanic hydrothermal metallogenic period (∼344 Ma) and skarn metallogenic period (∼239 Ma). The Early Carboniferous mineralization is characterized by layered ore bodies, a narrow range of δ<sup>34</sup>S values (+1.37 to +2.77 ‰), and low Co/Ni ratio in early pyrite (Py I), and high Ti, V, Cr, Ni, and Co contents in early magnetite (Mag I), showing single and deep origin for the fluid. In contrast, the Early Triassic mineralization has irregular-shaped ore bodies, higher contents of Si, Al, Mn, Mg, and Ca in late magnetite (Mag II), higher Co, Ni, As, and Cu contents, and a wider range of δ<sup>34</sup>S values (−0.18 to +3.35 ‰) in late pyrite (Py II), indicating mixed origin for the fluid. Thus, we propose that the Langwashan Fe deposit is formed by the superposition of two types of mineralization. The Early Carboniferous Hongshishan inter-arc oceanic basin subducted beneath the southern Tarim plate, and the iron-bearing magma migrated along the volcanic channel and annular faults, forming the first period of layered Fe ore bodies together with the volcanic rock deposition. During the Early Triassic, a hidden intrusion was generated in an extensional environment in the region, interacting with surrounding rocks through metasomatism, forming superimposed skarn-type Fe ore bodies. The two periods of mineralization determined in Langwashan have great significance for further exploration and prospecting of Fe ore deposits in the Tianshan orogenic belt.</div></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"85 3","pages":"Article 126284"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genesis of the Langwashan Fe deposit, NW China: Constraints from pyrite and magnetite geochemistry, and in-situ Rb-Sr dating\",\"authors\":\"Yuanlin Chen , Huan Li , Wenting Jiang , Majid Ghaderi , Adi Maulana , Liming Ouyang , Kun Liu\",\"doi\":\"10.1016/j.chemer.2025.126284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Langwashan Fe deposit, with 80 million tons of proven iron ore reserves, is located in the eastern portion of the Tianshan orogenic belt, NW China. Previous research carried out detailed geological, geochemical, and geophysical studies on the deposit, while there are still different views on the ore genesis. In this study, electron probe micro-analysis and laser ablation (multi-collector) inductively coupled plasma mass spectrometry analysis of variable minerals in ore samples were conducted. Based on ore texture, in-situ biotite Rb<img>Sr dating, magnetite and pyrite composition, and mineral assemblage, the Langwashan Fe mineralization has been divided into two metallogenic periods: volcanic hydrothermal metallogenic period (∼344 Ma) and skarn metallogenic period (∼239 Ma). The Early Carboniferous mineralization is characterized by layered ore bodies, a narrow range of δ<sup>34</sup>S values (+1.37 to +2.77 ‰), and low Co/Ni ratio in early pyrite (Py I), and high Ti, V, Cr, Ni, and Co contents in early magnetite (Mag I), showing single and deep origin for the fluid. In contrast, the Early Triassic mineralization has irregular-shaped ore bodies, higher contents of Si, Al, Mn, Mg, and Ca in late magnetite (Mag II), higher Co, Ni, As, and Cu contents, and a wider range of δ<sup>34</sup>S values (−0.18 to +3.35 ‰) in late pyrite (Py II), indicating mixed origin for the fluid. Thus, we propose that the Langwashan Fe deposit is formed by the superposition of two types of mineralization. The Early Carboniferous Hongshishan inter-arc oceanic basin subducted beneath the southern Tarim plate, and the iron-bearing magma migrated along the volcanic channel and annular faults, forming the first period of layered Fe ore bodies together with the volcanic rock deposition. During the Early Triassic, a hidden intrusion was generated in an extensional environment in the region, interacting with surrounding rocks through metasomatism, forming superimposed skarn-type Fe ore bodies. The two periods of mineralization determined in Langwashan have great significance for further exploration and prospecting of Fe ore deposits in the Tianshan orogenic belt.</div></div>\",\"PeriodicalId\":55973,\"journal\":{\"name\":\"Chemie Der Erde-Geochemistry\",\"volume\":\"85 3\",\"pages\":\"Article 126284\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Der Erde-Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000928192500039X\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000928192500039X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Genesis of the Langwashan Fe deposit, NW China: Constraints from pyrite and magnetite geochemistry, and in-situ Rb-Sr dating
The Langwashan Fe deposit, with 80 million tons of proven iron ore reserves, is located in the eastern portion of the Tianshan orogenic belt, NW China. Previous research carried out detailed geological, geochemical, and geophysical studies on the deposit, while there are still different views on the ore genesis. In this study, electron probe micro-analysis and laser ablation (multi-collector) inductively coupled plasma mass spectrometry analysis of variable minerals in ore samples were conducted. Based on ore texture, in-situ biotite RbSr dating, magnetite and pyrite composition, and mineral assemblage, the Langwashan Fe mineralization has been divided into two metallogenic periods: volcanic hydrothermal metallogenic period (∼344 Ma) and skarn metallogenic period (∼239 Ma). The Early Carboniferous mineralization is characterized by layered ore bodies, a narrow range of δ34S values (+1.37 to +2.77 ‰), and low Co/Ni ratio in early pyrite (Py I), and high Ti, V, Cr, Ni, and Co contents in early magnetite (Mag I), showing single and deep origin for the fluid. In contrast, the Early Triassic mineralization has irregular-shaped ore bodies, higher contents of Si, Al, Mn, Mg, and Ca in late magnetite (Mag II), higher Co, Ni, As, and Cu contents, and a wider range of δ34S values (−0.18 to +3.35 ‰) in late pyrite (Py II), indicating mixed origin for the fluid. Thus, we propose that the Langwashan Fe deposit is formed by the superposition of two types of mineralization. The Early Carboniferous Hongshishan inter-arc oceanic basin subducted beneath the southern Tarim plate, and the iron-bearing magma migrated along the volcanic channel and annular faults, forming the first period of layered Fe ore bodies together with the volcanic rock deposition. During the Early Triassic, a hidden intrusion was generated in an extensional environment in the region, interacting with surrounding rocks through metasomatism, forming superimposed skarn-type Fe ore bodies. The two periods of mineralization determined in Langwashan have great significance for further exploration and prospecting of Fe ore deposits in the Tianshan orogenic belt.
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry