使用gpu在同构多集群平台上调度可建模任务

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Fangfang Wu , Run Zhang , Xiandong Zhang
{"title":"使用gpu在同构多集群平台上调度可建模任务","authors":"Fangfang Wu ,&nbsp;Run Zhang ,&nbsp;Xiandong Zhang","doi":"10.1016/j.cor.2025.107041","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines task scheduling in homogeneous multi-cluster platforms, equipped with Graphics Processing Units (GPUs), with the aim of minimizing the makespan. We assume that tasks can be parallelized across these platforms under the moldable model. Recognizing the NP-hard nature of the problem, our goal is to develop algorithms that provide approximation ratios. While existing research has established algorithms for single-cluster GPU environments, scaling these to multi-cluster platforms introduces new challenges, especially due to the restriction that tasks cannot use processors from different clusters. We propose an integer programming-based algorithm that achieves an approximation ratio of <span><math><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>ϵ</mi></mrow></math></span>, trading off runtime for an improved approximation ratio. Additionally, leveraging recent theoretical advancements, we have created a polynomial-time algorithm with an approximation ratio of <span><math><mrow><mn>2</mn><mo>+</mo><mi>ϵ</mi></mrow></math></span>. Empirical computational experiments show that our algorithms surpass their counterparts in empirical approximation ratios.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"179 ","pages":"Article 107041"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scheduling moldable tasks on homogeneous multi-cluster platforms with GPUs\",\"authors\":\"Fangfang Wu ,&nbsp;Run Zhang ,&nbsp;Xiandong Zhang\",\"doi\":\"10.1016/j.cor.2025.107041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper examines task scheduling in homogeneous multi-cluster platforms, equipped with Graphics Processing Units (GPUs), with the aim of minimizing the makespan. We assume that tasks can be parallelized across these platforms under the moldable model. Recognizing the NP-hard nature of the problem, our goal is to develop algorithms that provide approximation ratios. While existing research has established algorithms for single-cluster GPU environments, scaling these to multi-cluster platforms introduces new challenges, especially due to the restriction that tasks cannot use processors from different clusters. We propose an integer programming-based algorithm that achieves an approximation ratio of <span><math><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>ϵ</mi></mrow></math></span>, trading off runtime for an improved approximation ratio. Additionally, leveraging recent theoretical advancements, we have created a polynomial-time algorithm with an approximation ratio of <span><math><mrow><mn>2</mn><mo>+</mo><mi>ϵ</mi></mrow></math></span>. Empirical computational experiments show that our algorithms surpass their counterparts in empirical approximation ratios.</div></div>\",\"PeriodicalId\":10542,\"journal\":{\"name\":\"Computers & Operations Research\",\"volume\":\"179 \",\"pages\":\"Article 107041\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Operations Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305054825000693\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825000693","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文以最小化完工时间为目标,研究了配备图形处理单元(gpu)的同构多集群平台上的任务调度。我们假设任务可以在可建模模型下跨这些平台并行化。认识到问题的np困难性质,我们的目标是开发提供近似比率的算法。虽然现有的研究已经为单集群GPU环境建立了算法,但将这些算法扩展到多集群平台会带来新的挑战,特别是由于任务不能使用来自不同集群的处理器的限制。我们提出了一种基于整数规划的算法,该算法实现了近似比为32+ λ,以改进的近似比为代价牺牲了运行时间。此外,利用最近的理论进步,我们创建了一个多项式时间算法,近似比为2+ ε。经验计算实验表明,我们的算法在经验近似比率上优于同类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scheduling moldable tasks on homogeneous multi-cluster platforms with GPUs
This paper examines task scheduling in homogeneous multi-cluster platforms, equipped with Graphics Processing Units (GPUs), with the aim of minimizing the makespan. We assume that tasks can be parallelized across these platforms under the moldable model. Recognizing the NP-hard nature of the problem, our goal is to develop algorithms that provide approximation ratios. While existing research has established algorithms for single-cluster GPU environments, scaling these to multi-cluster platforms introduces new challenges, especially due to the restriction that tasks cannot use processors from different clusters. We propose an integer programming-based algorithm that achieves an approximation ratio of 32+ϵ, trading off runtime for an improved approximation ratio. Additionally, leveraging recent theoretical advancements, we have created a polynomial-time algorithm with an approximation ratio of 2+ϵ. Empirical computational experiments show that our algorithms surpass their counterparts in empirical approximation ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信