{"title":"李(双)代数群的约束向量束与约简","authors":"Marvin Dippell , David Kern","doi":"10.1016/j.difgeo.2025.102242","DOIUrl":null,"url":null,"abstract":"<div><div>We present a framework for the reduction of various geometric structures extending the classical coisotropic Poisson reduction. For this we introduce constraint manifolds and constraint vector bundles. A constraint Serre-Swan theorem is proven, identifying constraint vector bundles with certain finitely generated projective modules, and a Cartan calculus for constraint differentiable forms and multivector fields is introduced. All of these constructions will be shown to be compatible with reduction. Finally, we apply this to obtain a reduction procedure for Lie (bi-)algebroids and Dirac manifolds.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102242"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraint vector bundles and reduction of Lie (bi-)algebroids\",\"authors\":\"Marvin Dippell , David Kern\",\"doi\":\"10.1016/j.difgeo.2025.102242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a framework for the reduction of various geometric structures extending the classical coisotropic Poisson reduction. For this we introduce constraint manifolds and constraint vector bundles. A constraint Serre-Swan theorem is proven, identifying constraint vector bundles with certain finitely generated projective modules, and a Cartan calculus for constraint differentiable forms and multivector fields is introduced. All of these constructions will be shown to be compatible with reduction. Finally, we apply this to obtain a reduction procedure for Lie (bi-)algebroids and Dirac manifolds.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"99 \",\"pages\":\"Article 102242\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000178\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000178","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Constraint vector bundles and reduction of Lie (bi-)algebroids
We present a framework for the reduction of various geometric structures extending the classical coisotropic Poisson reduction. For this we introduce constraint manifolds and constraint vector bundles. A constraint Serre-Swan theorem is proven, identifying constraint vector bundles with certain finitely generated projective modules, and a Cartan calculus for constraint differentiable forms and multivector fields is introduced. All of these constructions will be shown to be compatible with reduction. Finally, we apply this to obtain a reduction procedure for Lie (bi-)algebroids and Dirac manifolds.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.