复杂复合面向情感分析方法及其比较:综述

Faiz Ghifari Haznitrama, Ho-Jin Choi, Chin-Wan Chung
{"title":"复杂复合面向情感分析方法及其比较:综述","authors":"Faiz Ghifari Haznitrama,&nbsp;Ho-Jin Choi,&nbsp;Chin-Wan Chung","doi":"10.1016/j.aiopen.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>Sentiment analysis as a part of natural language processing (NLP) has received much attention following the demand to understand people’s opinions. Aspect-based sentiment analysis (ABSA) is a fine-grained task from sentiment analysis that aims to classify the sentiment at the aspect level. Throughout the years, researchers have formulated ABSA into various tasks for different scenarios. Unlike early works, current ABSA tasks utilize many elements to provide more details to produce informative results. However, it is difficult to completely explore the works of ABSA because of the many different tasks, terms, and results. This paper surveyed recent studies on ABSA, specifically on its complex compound tasks. We investigated some key elements, problem formulations, and datasets currently utilized by most ABSA communities. We focused on reviewing the latest methodologies and worked to find the current <em>state-of-the-art</em> methodologies by performing a comparative analysis. From our study, we found that there has been a shift to generative methods in solving the ABSA problem, which signifies the evolving emphasis on holistic, end-to-end approaches. Finally, we identified some open challenges and future directions for ABSA research.</div></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"6 ","pages":"Pages 53-69"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methodologies and their comparison in complex compound aspect-based sentiment analysis: A survey\",\"authors\":\"Faiz Ghifari Haznitrama,&nbsp;Ho-Jin Choi,&nbsp;Chin-Wan Chung\",\"doi\":\"10.1016/j.aiopen.2025.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sentiment analysis as a part of natural language processing (NLP) has received much attention following the demand to understand people’s opinions. Aspect-based sentiment analysis (ABSA) is a fine-grained task from sentiment analysis that aims to classify the sentiment at the aspect level. Throughout the years, researchers have formulated ABSA into various tasks for different scenarios. Unlike early works, current ABSA tasks utilize many elements to provide more details to produce informative results. However, it is difficult to completely explore the works of ABSA because of the many different tasks, terms, and results. This paper surveyed recent studies on ABSA, specifically on its complex compound tasks. We investigated some key elements, problem formulations, and datasets currently utilized by most ABSA communities. We focused on reviewing the latest methodologies and worked to find the current <em>state-of-the-art</em> methodologies by performing a comparative analysis. From our study, we found that there has been a shift to generative methods in solving the ABSA problem, which signifies the evolving emphasis on holistic, end-to-end approaches. Finally, we identified some open challenges and future directions for ABSA research.</div></div>\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"6 \",\"pages\":\"Pages 53-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666651025000051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651025000051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感分析作为自然语言处理(NLP)的一部分,随着人们对理解人们观点的需求而受到越来越多的关注。基于方面的情感分析(ABSA)是一种来自情感分析的细粒度任务,旨在对方面级别的情感进行分类。多年来,研究人员已经将ABSA制定为不同场景的各种任务。与早期的工作不同,当前的ABSA任务利用许多元素来提供更多细节,以产生信息丰富的结果。然而,由于许多不同的任务、术语和结果,很难完全探索ABSA的作品。本文综述了近年来对ABSA的研究,特别是对其复杂复合任务的研究。我们调查了目前大多数ABSA社区使用的一些关键要素、问题表述和数据集。我们专注于审查最新的方法,并通过进行比较分析,努力找到当前最先进的方法。从我们的研究中,我们发现在解决ABSA问题时已经转向生成方法,这意味着对整体端到端方法的不断强调。最后,我们确定了ABSA研究的一些开放挑战和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methodologies and their comparison in complex compound aspect-based sentiment analysis: A survey
Sentiment analysis as a part of natural language processing (NLP) has received much attention following the demand to understand people’s opinions. Aspect-based sentiment analysis (ABSA) is a fine-grained task from sentiment analysis that aims to classify the sentiment at the aspect level. Throughout the years, researchers have formulated ABSA into various tasks for different scenarios. Unlike early works, current ABSA tasks utilize many elements to provide more details to produce informative results. However, it is difficult to completely explore the works of ABSA because of the many different tasks, terms, and results. This paper surveyed recent studies on ABSA, specifically on its complex compound tasks. We investigated some key elements, problem formulations, and datasets currently utilized by most ABSA communities. We focused on reviewing the latest methodologies and worked to find the current state-of-the-art methodologies by performing a comparative analysis. From our study, we found that there has been a shift to generative methods in solving the ABSA problem, which signifies the evolving emphasis on holistic, end-to-end approaches. Finally, we identified some open challenges and future directions for ABSA research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信