考虑功率损耗和总拥有成本(TOC)的密闭式生态设计配电变压器重量优化

Mohammad Hassan Hashemi , Ulas Kilic
{"title":"考虑功率损耗和总拥有成本(TOC)的密闭式生态设计配电变压器重量优化","authors":"Mohammad Hassan Hashemi ,&nbsp;Ulas Kilic","doi":"10.1016/j.prime.2025.100946","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the application of heuristic optimization techniques for weight optimization in eco-design distribution transformers, with a focus on hermetically sealed transformers. Specifically, the study employs Differential Evolution (DE), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO) algorithms to compare their efficacy against conventional design approaches. Through rigorous analysis, GWO emerges as the superior method, showcasing enhanced performance in weight optimization. The findings underscore the significance of weight optimization in eco-design, as it directly contributes to resource conservation, including essential materials like copper, aluminum, oil, and iron. Consequently, the study highlights the pivotal role of heuristic optimization methods in advancing eco-friendly transformer design practices, with GWO demonstrating notable superiority in achieving weight reduction objectives.</div></div>","PeriodicalId":100488,"journal":{"name":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","volume":"12 ","pages":"Article 100946"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hermetically sealed ecodesign distribution transformer weight optimization considering power losses and total ownership cost (TOC)\",\"authors\":\"Mohammad Hassan Hashemi ,&nbsp;Ulas Kilic\",\"doi\":\"10.1016/j.prime.2025.100946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the application of heuristic optimization techniques for weight optimization in eco-design distribution transformers, with a focus on hermetically sealed transformers. Specifically, the study employs Differential Evolution (DE), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO) algorithms to compare their efficacy against conventional design approaches. Through rigorous analysis, GWO emerges as the superior method, showcasing enhanced performance in weight optimization. The findings underscore the significance of weight optimization in eco-design, as it directly contributes to resource conservation, including essential materials like copper, aluminum, oil, and iron. Consequently, the study highlights the pivotal role of heuristic optimization methods in advancing eco-friendly transformer design practices, with GWO demonstrating notable superiority in achieving weight reduction objectives.</div></div>\",\"PeriodicalId\":100488,\"journal\":{\"name\":\"e-Prime - Advances in Electrical Engineering, Electronics and Energy\",\"volume\":\"12 \",\"pages\":\"Article 100946\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Prime - Advances in Electrical Engineering, Electronics and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772671125000531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772671125000531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文以密闭式配电变压器为研究对象,研究了启发式优化技术在配电变压器生态设计中的应用。具体来说,该研究采用差分进化(DE)、粒子群优化(PSO)和灰狼优化(GWO)算法来比较它们与传统设计方法的效果。经过严格的分析,GWO在权重优化方面表现出更强的性能,是一种更优的方法。研究结果强调了重量优化在生态设计中的重要性,因为它直接有助于资源节约,包括铜、铝、油和铁等重要材料。因此,该研究强调了启发式优化方法在推进环保变压器设计实践中的关键作用,GWO在实现减重目标方面表现出显着的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hermetically sealed ecodesign distribution transformer weight optimization considering power losses and total ownership cost (TOC)
This paper investigates the application of heuristic optimization techniques for weight optimization in eco-design distribution transformers, with a focus on hermetically sealed transformers. Specifically, the study employs Differential Evolution (DE), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO) algorithms to compare their efficacy against conventional design approaches. Through rigorous analysis, GWO emerges as the superior method, showcasing enhanced performance in weight optimization. The findings underscore the significance of weight optimization in eco-design, as it directly contributes to resource conservation, including essential materials like copper, aluminum, oil, and iron. Consequently, the study highlights the pivotal role of heuristic optimization methods in advancing eco-friendly transformer design practices, with GWO demonstrating notable superiority in achieving weight reduction objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信