Junkun Pan, Kimberly A. Carter-Fenk, Samantha T. Hung, Nhu Dao, Jordyn N. S. Smith and Michael D. Fayer*,
{"title":"用超快红外光谱研究四乙基卤化铵/乙二醇深共晶混合物的动力学","authors":"Junkun Pan, Kimberly A. Carter-Fenk, Samantha T. Hung, Nhu Dao, Jordyn N. S. Smith and Michael D. Fayer*, ","doi":"10.1021/acs.jpcb.4c0873910.1021/acs.jpcb.4c08739","DOIUrl":null,"url":null,"abstract":"<p >Health and environmental risks posed by volatile organic solvents create an incentive to develop safer, less volatile solvents with the appropriate functionality. Deep eutectic solvents and other low-volatility organic mixtures offer a highly tunable alternative through a mixture composition selection. However, a significant gap exists in understanding the relationship between molecular-level properties and the resulting solvation and transport properties. Using ultrafast infrared (IR) polarization-selective pump–probe (lifetimes and orientational relaxation) spectroscopy, we investigated the dynamics of 1:3 molar mixtures of tetraethylammonium bromide (TEABr) and chloride (TEACl) with ethylene glycol (EG) and of pure EG using the anionic vibrational probe, the CN stretch of SeCN<sup>–</sup>. The very high salt concentrations are in many respects analogous to water-in-salt solutions, e.g., LiBr and LiCl. These ion/water mixtures can have extremely high ratios of ions to solvating neutral molecules, similar to the 1:3TEABr and 1:3TEACl mixtures studied here. In 1:3TEABr/EG and 1:3TEACl/EG solutions, there are far too few EGs to solvate the ions. Therefore, like water-in-salt, 1:3TEABr/EG and 1:3TEACl/EG solutions will have solvent-separated ion pairs, contact ion pairs, and large ion/EG clusters, forming extended ion/solvent networks. The orientational dynamics experiments on 1:3TEABr/EG and 1:3TEACl/EG show striking similarities to experiments from the literature on 1:4 LiBr and LiCl aqueous solutions, even though the cations and solvents in the deep eutectic mixtures are vastly different.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 10","pages":"2718–2729 2718–2729"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Deep Eutectic Mixtures of Tetraethylammonium Halides/Ethylene Glycol Investigated with Ultrafast Infrared Spectroscopy\",\"authors\":\"Junkun Pan, Kimberly A. Carter-Fenk, Samantha T. Hung, Nhu Dao, Jordyn N. S. Smith and Michael D. Fayer*, \",\"doi\":\"10.1021/acs.jpcb.4c0873910.1021/acs.jpcb.4c08739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Health and environmental risks posed by volatile organic solvents create an incentive to develop safer, less volatile solvents with the appropriate functionality. Deep eutectic solvents and other low-volatility organic mixtures offer a highly tunable alternative through a mixture composition selection. However, a significant gap exists in understanding the relationship between molecular-level properties and the resulting solvation and transport properties. Using ultrafast infrared (IR) polarization-selective pump–probe (lifetimes and orientational relaxation) spectroscopy, we investigated the dynamics of 1:3 molar mixtures of tetraethylammonium bromide (TEABr) and chloride (TEACl) with ethylene glycol (EG) and of pure EG using the anionic vibrational probe, the CN stretch of SeCN<sup>–</sup>. The very high salt concentrations are in many respects analogous to water-in-salt solutions, e.g., LiBr and LiCl. These ion/water mixtures can have extremely high ratios of ions to solvating neutral molecules, similar to the 1:3TEABr and 1:3TEACl mixtures studied here. In 1:3TEABr/EG and 1:3TEACl/EG solutions, there are far too few EGs to solvate the ions. Therefore, like water-in-salt, 1:3TEABr/EG and 1:3TEACl/EG solutions will have solvent-separated ion pairs, contact ion pairs, and large ion/EG clusters, forming extended ion/solvent networks. The orientational dynamics experiments on 1:3TEABr/EG and 1:3TEACl/EG show striking similarities to experiments from the literature on 1:4 LiBr and LiCl aqueous solutions, even though the cations and solvents in the deep eutectic mixtures are vastly different.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\"129 10\",\"pages\":\"2718–2729 2718–2729\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcb.4c08739\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.4c08739","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Dynamics of Deep Eutectic Mixtures of Tetraethylammonium Halides/Ethylene Glycol Investigated with Ultrafast Infrared Spectroscopy
Health and environmental risks posed by volatile organic solvents create an incentive to develop safer, less volatile solvents with the appropriate functionality. Deep eutectic solvents and other low-volatility organic mixtures offer a highly tunable alternative through a mixture composition selection. However, a significant gap exists in understanding the relationship between molecular-level properties and the resulting solvation and transport properties. Using ultrafast infrared (IR) polarization-selective pump–probe (lifetimes and orientational relaxation) spectroscopy, we investigated the dynamics of 1:3 molar mixtures of tetraethylammonium bromide (TEABr) and chloride (TEACl) with ethylene glycol (EG) and of pure EG using the anionic vibrational probe, the CN stretch of SeCN–. The very high salt concentrations are in many respects analogous to water-in-salt solutions, e.g., LiBr and LiCl. These ion/water mixtures can have extremely high ratios of ions to solvating neutral molecules, similar to the 1:3TEABr and 1:3TEACl mixtures studied here. In 1:3TEABr/EG and 1:3TEACl/EG solutions, there are far too few EGs to solvate the ions. Therefore, like water-in-salt, 1:3TEABr/EG and 1:3TEACl/EG solutions will have solvent-separated ion pairs, contact ion pairs, and large ion/EG clusters, forming extended ion/solvent networks. The orientational dynamics experiments on 1:3TEABr/EG and 1:3TEACl/EG show striking similarities to experiments from the literature on 1:4 LiBr and LiCl aqueous solutions, even though the cations and solvents in the deep eutectic mixtures are vastly different.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.