宽高比控制金纳米砖中的热载流子生成

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Simão M. João, Ottavio Bassano and Johannes Lischner*, 
{"title":"宽高比控制金纳米砖中的热载流子生成","authors":"Simão M. João,&nbsp;Ottavio Bassano and Johannes Lischner*,&nbsp;","doi":"10.1021/acs.jpcc.4c0859510.1021/acs.jpcc.4c08595","DOIUrl":null,"url":null,"abstract":"<p >Energetic or “hot” electrons and holes generated from the decay of localized surface plasmons in metallic nanoparticles have great potential for applications in photocatalysis, photovoltaics, and sensing. Here, we study the generation of hot carriers in brick-shaped gold nanoparticles using a recently developed modeling approach that combines a solution to Maxwell’s equation with large-scale tight-binding simulations to evaluate Fermi’s Golden Rule. We find that hot-carrier generation depends sensitively on the aspect ratio of the nanobricks with flatter bricks, producing a large number of energetic electrons irrespective of the light polarization. In contrast, the hot-carrier generation rates of elongated nanobricks exhibit a strong dependence on the light polarization. The insights resulting from our calculations can be harnessed to design nanobricks that produce hot carriers with properties tailored to specific device applications.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 10","pages":"4886–4892 4886–4892"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c08595","citationCount":"0","resultStr":"{\"title\":\"Aspect Ratio Controls Hot-Carrier Generation in Gold Nanobricks\",\"authors\":\"Simão M. João,&nbsp;Ottavio Bassano and Johannes Lischner*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0859510.1021/acs.jpcc.4c08595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Energetic or “hot” electrons and holes generated from the decay of localized surface plasmons in metallic nanoparticles have great potential for applications in photocatalysis, photovoltaics, and sensing. Here, we study the generation of hot carriers in brick-shaped gold nanoparticles using a recently developed modeling approach that combines a solution to Maxwell’s equation with large-scale tight-binding simulations to evaluate Fermi’s Golden Rule. We find that hot-carrier generation depends sensitively on the aspect ratio of the nanobricks with flatter bricks, producing a large number of energetic electrons irrespective of the light polarization. In contrast, the hot-carrier generation rates of elongated nanobricks exhibit a strong dependence on the light polarization. The insights resulting from our calculations can be harnessed to design nanobricks that produce hot carriers with properties tailored to specific device applications.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 10\",\"pages\":\"4886–4892 4886–4892\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c08595\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08595\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08595","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属纳米粒子中局部表面等离子体衰变产生的高能或“热”电子和空穴在光催化、光伏和传感领域具有巨大的应用潜力。在这里,我们研究了砖形金纳米颗粒中热载流子的产生,使用了最近开发的一种建模方法,该方法将麦克斯韦方程的解与大规模紧密结合的模拟相结合,以评估费米黄金法则。我们发现,热载流子的产生敏感地依赖于具有平坦砖的纳米砖的长径比,产生大量的高能电子,而与光偏振无关。相反,细长纳米砖的热载流子生成速率与光偏振有很强的依赖性。从我们的计算中得出的见解可以用来设计纳米砖,产生具有特定设备应用特性的热载流子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspect Ratio Controls Hot-Carrier Generation in Gold Nanobricks

Energetic or “hot” electrons and holes generated from the decay of localized surface plasmons in metallic nanoparticles have great potential for applications in photocatalysis, photovoltaics, and sensing. Here, we study the generation of hot carriers in brick-shaped gold nanoparticles using a recently developed modeling approach that combines a solution to Maxwell’s equation with large-scale tight-binding simulations to evaluate Fermi’s Golden Rule. We find that hot-carrier generation depends sensitively on the aspect ratio of the nanobricks with flatter bricks, producing a large number of energetic electrons irrespective of the light polarization. In contrast, the hot-carrier generation rates of elongated nanobricks exhibit a strong dependence on the light polarization. The insights resulting from our calculations can be harnessed to design nanobricks that produce hot carriers with properties tailored to specific device applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信