Mengyue Wu, Ian Torrence, Yuanning Liu, Jingshuai Wu, Rui Ge, Ke Ma, Dong Liu, Jinwei Ren, Shilong Fan, Ming Ma, Justin B. Siegel, Dean J. Tantillo, Wenhan Lin, Aili Fan
{"title":"双abolene合成酶的表征和工程揭示了一个不寻常的氢化物转移和对单、双、三环倍半萜形成至关重要的关键残基","authors":"Mengyue Wu, Ian Torrence, Yuanning Liu, Jingshuai Wu, Rui Ge, Ke Ma, Dong Liu, Jinwei Ren, Shilong Fan, Ming Ma, Justin B. Siegel, Dean J. Tantillo, Wenhan Lin, Aili Fan","doi":"10.1021/jacs.4c17818","DOIUrl":null,"url":null,"abstract":"Sesquiterpene synthases (STSs) catalyze carbocation cascade reactions with various hydrogen shifts and cyclization patterns that generate structurally diverse sesquiterpene skeletons. However, the molecular basis for hydrogen shifts and cyclizations, which determine STS product distributions, remains enigmatic. In this study, an elusive STS SydA was identified in the biosynthesis of sydonol, which synthesized a new bisabolene-type sesquiterpene <b>6</b> with a unique saturated terminal pendant isopentane. Extensive evidence from isotope labeling experiments, crystal structures of SydA and its variant, quantum chemical calculations, and mutagenesis experiments reveal a plausible mechanism for the formation of <b>6</b> involving an unusual 1,7-hydride shift, which may be a key branchpoint for monocyclic, bicyclic, and tricyclic products. Structure-based engineering resulted in SydA variants that promote different reaction pathways, leading to the production of bicyclic α-cuprenene and (+)-β-chamigrene and tricyclic 7-<i>epi</i>-β-cedrene and β-microbiotene. These findings not only reveal a new bisabolene and its biosynthesis but also provide insights into the molecular basis of the hydride shifts and cyclizations, which pave the way for engineering STSs to produce complex terpenoid products.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"40 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and Engineering of a Bisabolene Synthase Reveal an Unusual Hydride Shift and Key Residues Critical for Mono-, Bi-, and Tricyclic Sesquiterpenes Formation\",\"authors\":\"Mengyue Wu, Ian Torrence, Yuanning Liu, Jingshuai Wu, Rui Ge, Ke Ma, Dong Liu, Jinwei Ren, Shilong Fan, Ming Ma, Justin B. Siegel, Dean J. Tantillo, Wenhan Lin, Aili Fan\",\"doi\":\"10.1021/jacs.4c17818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sesquiterpene synthases (STSs) catalyze carbocation cascade reactions with various hydrogen shifts and cyclization patterns that generate structurally diverse sesquiterpene skeletons. However, the molecular basis for hydrogen shifts and cyclizations, which determine STS product distributions, remains enigmatic. In this study, an elusive STS SydA was identified in the biosynthesis of sydonol, which synthesized a new bisabolene-type sesquiterpene <b>6</b> with a unique saturated terminal pendant isopentane. Extensive evidence from isotope labeling experiments, crystal structures of SydA and its variant, quantum chemical calculations, and mutagenesis experiments reveal a plausible mechanism for the formation of <b>6</b> involving an unusual 1,7-hydride shift, which may be a key branchpoint for monocyclic, bicyclic, and tricyclic products. Structure-based engineering resulted in SydA variants that promote different reaction pathways, leading to the production of bicyclic α-cuprenene and (+)-β-chamigrene and tricyclic 7-<i>epi</i>-β-cedrene and β-microbiotene. These findings not only reveal a new bisabolene and its biosynthesis but also provide insights into the molecular basis of the hydride shifts and cyclizations, which pave the way for engineering STSs to produce complex terpenoid products.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c17818\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17818","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Characterization and Engineering of a Bisabolene Synthase Reveal an Unusual Hydride Shift and Key Residues Critical for Mono-, Bi-, and Tricyclic Sesquiterpenes Formation
Sesquiterpene synthases (STSs) catalyze carbocation cascade reactions with various hydrogen shifts and cyclization patterns that generate structurally diverse sesquiterpene skeletons. However, the molecular basis for hydrogen shifts and cyclizations, which determine STS product distributions, remains enigmatic. In this study, an elusive STS SydA was identified in the biosynthesis of sydonol, which synthesized a new bisabolene-type sesquiterpene 6 with a unique saturated terminal pendant isopentane. Extensive evidence from isotope labeling experiments, crystal structures of SydA and its variant, quantum chemical calculations, and mutagenesis experiments reveal a plausible mechanism for the formation of 6 involving an unusual 1,7-hydride shift, which may be a key branchpoint for monocyclic, bicyclic, and tricyclic products. Structure-based engineering resulted in SydA variants that promote different reaction pathways, leading to the production of bicyclic α-cuprenene and (+)-β-chamigrene and tricyclic 7-epi-β-cedrene and β-microbiotene. These findings not only reveal a new bisabolene and its biosynthesis but also provide insights into the molecular basis of the hydride shifts and cyclizations, which pave the way for engineering STSs to produce complex terpenoid products.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.