高阶非拟合时空方法参数映射的几何误差分析

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Fabian Heimann, Christoph Lehrenfeld
{"title":"高阶非拟合时空方法参数映射的几何误差分析","authors":"Fabian Heimann, Christoph Lehrenfeld","doi":"10.1093/imanum/drae098","DOIUrl":null,"url":null,"abstract":"In Heimann, Lehrenfeld, and Preuß (2023, SIAM J. Sci. Comp., 45(2), B139–B165), new geometrically unfitted space–time Finite Element methods for partial differential equations posed on moving domains of higher-order accuracy in space and time have been introduced. For geometrically higher-order accuracy a parametric mapping on a background space–time tensor-product mesh has been used. In this paper, we concentrate on the geometrical accuracy of the approximation and derive rigorous bounds for the distance between the realized and an ideal mapping in different norms and derive results for the space–time regularity of the parametric mapping. These results are important and lay the ground for the error analysis of corresponding unfitted space–time finite element methods.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"17 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry error analysis of a parametric mapping for higher order unfitted space–time methods\",\"authors\":\"Fabian Heimann, Christoph Lehrenfeld\",\"doi\":\"10.1093/imanum/drae098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Heimann, Lehrenfeld, and Preuß (2023, SIAM J. Sci. Comp., 45(2), B139–B165), new geometrically unfitted space–time Finite Element methods for partial differential equations posed on moving domains of higher-order accuracy in space and time have been introduced. For geometrically higher-order accuracy a parametric mapping on a background space–time tensor-product mesh has been used. In this paper, we concentrate on the geometrical accuracy of the approximation and derive rigorous bounds for the distance between the realized and an ideal mapping in different norms and derive results for the space–time regularity of the parametric mapping. These results are important and lay the ground for the error analysis of corresponding unfitted space–time finite element methods.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae098\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae098","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry error analysis of a parametric mapping for higher order unfitted space–time methods
In Heimann, Lehrenfeld, and Preuß (2023, SIAM J. Sci. Comp., 45(2), B139–B165), new geometrically unfitted space–time Finite Element methods for partial differential equations posed on moving domains of higher-order accuracy in space and time have been introduced. For geometrically higher-order accuracy a parametric mapping on a background space–time tensor-product mesh has been used. In this paper, we concentrate on the geometrical accuracy of the approximation and derive rigorous bounds for the distance between the realized and an ideal mapping in different norms and derive results for the space–time regularity of the parametric mapping. These results are important and lay the ground for the error analysis of corresponding unfitted space–time finite element methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信