{"title":"一阶声波方程的良好拟合与时空有限元近似","authors":"Thomas Führer, Roberto González, Michael Karkulik","doi":"10.1093/imanum/drae104","DOIUrl":null,"url":null,"abstract":"We study a first-order system formulation of the (acoustic) wave equation and prove that the operator of this system is an isomorphism from an appropriately defined graph space to $L^{2}$. The results rely on well-posedness and stability of the weak and ultraweak formulation of the second-order wave equation. As an application, we define and analyze a space-time least-squares finite element method for solving the wave equation. Some numerical examples for one- and two-dimensional spatial domains are presented.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"86 1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness of first-order acoustic wave equations and space-time finite element approximation\",\"authors\":\"Thomas Führer, Roberto González, Michael Karkulik\",\"doi\":\"10.1093/imanum/drae104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a first-order system formulation of the (acoustic) wave equation and prove that the operator of this system is an isomorphism from an appropriately defined graph space to $L^{2}$. The results rely on well-posedness and stability of the weak and ultraweak formulation of the second-order wave equation. As an application, we define and analyze a space-time least-squares finite element method for solving the wave equation. Some numerical examples for one- and two-dimensional spatial domains are presented.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"86 1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae104\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Well-posedness of first-order acoustic wave equations and space-time finite element approximation
We study a first-order system formulation of the (acoustic) wave equation and prove that the operator of this system is an isomorphism from an appropriately defined graph space to $L^{2}$. The results rely on well-posedness and stability of the weak and ultraweak formulation of the second-order wave equation. As an application, we define and analyze a space-time least-squares finite element method for solving the wave equation. Some numerical examples for one- and two-dimensional spatial domains are presented.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.