通过单细胞系谱追踪发现淋巴系统是乳腺癌扩散和转移的主流

IF 27.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kai Miao, Aiping Zhang, Xiaodan Yang, Yipeng Zhang, Anqi Lin, Lijian Wang, Xin Zhang, Heng Sun, Jun Xu, Jingyao Zhang, Yuzhao Feng, Fangyuan Shao, Sen Guo, Zhihui Weng, Peng Luo, Dong Wang, Shuai Gao, Xiao-Yang Zhao, Xiaoling Xu, Chu-Xia Deng
{"title":"通过单细胞系谱追踪发现淋巴系统是乳腺癌扩散和转移的主流","authors":"Kai Miao, Aiping Zhang, Xiaodan Yang, Yipeng Zhang, Anqi Lin, Lijian Wang, Xin Zhang, Heng Sun, Jun Xu, Jingyao Zhang, Yuzhao Feng, Fangyuan Shao, Sen Guo, Zhihui Weng, Peng Luo, Dong Wang, Shuai Gao, Xiao-Yang Zhao, Xiaoling Xu, Chu-Xia Deng","doi":"10.1186/s12943-025-02279-w","DOIUrl":null,"url":null,"abstract":"Cancer metastasis is the primary cause of cancer-related death, yet the forces that drive cancer cells through various steps and different routes to distinct target organs/tissues remain elusive. In this study, we applied a barcoding system based single-cell lineage tracing approach to study the metastasis rate and route of breast cancer cells and their interactions with the tumor microenvironment (TME) during metastasis. The results indicate that only a small fraction of cells, accounting for fewer than 3% of total barcodes, can intravasate from the primary site into the blood circulation, whereas more cells disseminate through the lymphatic system to different organs. Tumor cells derived from the same progenitor cell exhibit different gene expression patterns in different soils, and the cancer cell-TME communication paradigm varies significantly between primary and metastatic tumors. Furthermore, metastable cells require a prewired particular cytokine expression ability which may be specific for lymph metastasis route although the underlying mechanism requires further investigation. In summary, leveraging a single-cell lineage tracing system, we demonstrate that the crosstalk between tumor cells and the TME is the driving force controlling the preferential metastatic fate of cancer cells through the lymphatic system. ","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"68 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lymphatic system is the mainstream for breast cancer dissemination and metastasis revealed by single-cell lineage tracing\",\"authors\":\"Kai Miao, Aiping Zhang, Xiaodan Yang, Yipeng Zhang, Anqi Lin, Lijian Wang, Xin Zhang, Heng Sun, Jun Xu, Jingyao Zhang, Yuzhao Feng, Fangyuan Shao, Sen Guo, Zhihui Weng, Peng Luo, Dong Wang, Shuai Gao, Xiao-Yang Zhao, Xiaoling Xu, Chu-Xia Deng\",\"doi\":\"10.1186/s12943-025-02279-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer metastasis is the primary cause of cancer-related death, yet the forces that drive cancer cells through various steps and different routes to distinct target organs/tissues remain elusive. In this study, we applied a barcoding system based single-cell lineage tracing approach to study the metastasis rate and route of breast cancer cells and their interactions with the tumor microenvironment (TME) during metastasis. The results indicate that only a small fraction of cells, accounting for fewer than 3% of total barcodes, can intravasate from the primary site into the blood circulation, whereas more cells disseminate through the lymphatic system to different organs. Tumor cells derived from the same progenitor cell exhibit different gene expression patterns in different soils, and the cancer cell-TME communication paradigm varies significantly between primary and metastatic tumors. Furthermore, metastable cells require a prewired particular cytokine expression ability which may be specific for lymph metastasis route although the underlying mechanism requires further investigation. In summary, leveraging a single-cell lineage tracing system, we demonstrate that the crosstalk between tumor cells and the TME is the driving force controlling the preferential metastatic fate of cancer cells through the lymphatic system. \",\"PeriodicalId\":19000,\"journal\":{\"name\":\"Molecular Cancer\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12943-025-02279-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02279-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lymphatic system is the mainstream for breast cancer dissemination and metastasis revealed by single-cell lineage tracing
Cancer metastasis is the primary cause of cancer-related death, yet the forces that drive cancer cells through various steps and different routes to distinct target organs/tissues remain elusive. In this study, we applied a barcoding system based single-cell lineage tracing approach to study the metastasis rate and route of breast cancer cells and their interactions with the tumor microenvironment (TME) during metastasis. The results indicate that only a small fraction of cells, accounting for fewer than 3% of total barcodes, can intravasate from the primary site into the blood circulation, whereas more cells disseminate through the lymphatic system to different organs. Tumor cells derived from the same progenitor cell exhibit different gene expression patterns in different soils, and the cancer cell-TME communication paradigm varies significantly between primary and metastatic tumors. Furthermore, metastable cells require a prewired particular cytokine expression ability which may be specific for lymph metastasis route although the underlying mechanism requires further investigation. In summary, leveraging a single-cell lineage tracing system, we demonstrate that the crosstalk between tumor cells and the TME is the driving force controlling the preferential metastatic fate of cancer cells through the lymphatic system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Cancer
Molecular Cancer 医学-生化与分子生物学
CiteScore
54.90
自引率
2.70%
发文量
224
审稿时长
2 months
期刊介绍: Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer. The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies. Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信