辐照碳酸盐中的原生基离子

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Irina S. Tretyakova and Vsevolod I. Borovkov
{"title":"辐照碳酸盐中的原生基离子","authors":"Irina S. Tretyakova and Vsevolod I. Borovkov","doi":"10.1039/D5CP00263J","DOIUrl":null,"url":null,"abstract":"<p >This study focuses on primary radical ionic species created in liquid carbonates upon high-energy radiation. We studied the radiation-induced fluorescence intensity decays observed from solutions of luminophores in dimethyl, diethyl, ethylene, and propylene carbonates. Based on the effects of external magnetic and electric fields on the fluorescence decays on a timescale of 1–60 ns and quantum chemical calculations, we found that in all studied carbonates, solvent ionization was rapidly followed by the formation of comparatively long-lived positive charge and unpaired electron spin carriers. These carriers are complexes in which two carbonate molecules are oriented to each other by carbonyl groups, with the charge and spin density primarily distributed over these two C<img>O groups. In the case of diethyl carbonate, the formation of such a complex occurs with a probability that depends on the conformation of ionized molecules and on the rate of parallel reaction of intramolecular proton transfer from the methyl or methylene groups to the carbonyl oxygen atom. In low-polarity carbonates, evidence for the existence of solvent radical anions with molecular mobility was found.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 12","pages":" 6342-6355"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primary radical ions in irradiated carbonates†\",\"authors\":\"Irina S. Tretyakova and Vsevolod I. Borovkov\",\"doi\":\"10.1039/D5CP00263J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study focuses on primary radical ionic species created in liquid carbonates upon high-energy radiation. We studied the radiation-induced fluorescence intensity decays observed from solutions of luminophores in dimethyl, diethyl, ethylene, and propylene carbonates. Based on the effects of external magnetic and electric fields on the fluorescence decays on a timescale of 1–60 ns and quantum chemical calculations, we found that in all studied carbonates, solvent ionization was rapidly followed by the formation of comparatively long-lived positive charge and unpaired electron spin carriers. These carriers are complexes in which two carbonate molecules are oriented to each other by carbonyl groups, with the charge and spin density primarily distributed over these two C<img>O groups. In the case of diethyl carbonate, the formation of such a complex occurs with a probability that depends on the conformation of ionized molecules and on the rate of parallel reaction of intramolecular proton transfer from the methyl or methylene groups to the carbonyl oxygen atom. In low-polarity carbonates, evidence for the existence of solvent radical anions with molecular mobility was found.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 12\",\"pages\":\" 6342-6355\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00263j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00263j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是高能辐射下液体碳酸盐中产生的初级自由基离子。我们研究了在二甲基、二乙基、乙烯和丙烯碳酸酯溶液中观察到的发光团辐射诱导的荧光强度衰减。基于外部磁场和电场对1 - 60ns时间尺度上荧光衰减的影响和量子化学计算,我们发现在所有研究的碳酸盐中,溶剂电离之后迅速形成相对较长的正电荷和不成对的电子自旋载流子。这些载体是两个碳酸盐分子通过羰基相互定向的配合物,电荷和自旋密度主要分布在这两个CO基团上。在碳酸二乙酯的情况下,这种络合物的形成概率取决于电离分子的构象和分子内质子从甲基或亚甲基转移到羰基氧原子的平行反应速率。在低极性碳酸盐中,发现了具有分子迁移性的溶剂自由基阴离子存在的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Primary radical ions in irradiated carbonates†

Primary radical ions in irradiated carbonates†

Primary radical ions in irradiated carbonates†

This study focuses on primary radical ionic species created in liquid carbonates upon high-energy radiation. We studied the radiation-induced fluorescence intensity decays observed from solutions of luminophores in dimethyl, diethyl, ethylene, and propylene carbonates. Based on the effects of external magnetic and electric fields on the fluorescence decays on a timescale of 1–60 ns and quantum chemical calculations, we found that in all studied carbonates, solvent ionization was rapidly followed by the formation of comparatively long-lived positive charge and unpaired electron spin carriers. These carriers are complexes in which two carbonate molecules are oriented to each other by carbonyl groups, with the charge and spin density primarily distributed over these two CO groups. In the case of diethyl carbonate, the formation of such a complex occurs with a probability that depends on the conformation of ionized molecules and on the rate of parallel reaction of intramolecular proton transfer from the methyl or methylene groups to the carbonyl oxygen atom. In low-polarity carbonates, evidence for the existence of solvent radical anions with molecular mobility was found.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信