{"title":"时变全局最优在线联邦再现梯度下降","authors":"Yifu Lin;Wenling Li;Jia Song;Xiaoming Li","doi":"10.1109/TSP.2025.3549591","DOIUrl":null,"url":null,"abstract":"This paper addresses an online federated learning problem, where the time drift in data distribution leads to time-varying global optima. To adapt to the drift, this paper designs a random Fourier features (RFF) model combined with Reproducing Kernel Hilbert Space (RKHS) theory to tracking the global gradient. Meanwhile, the model also can mitigate gradient variance from local data and gradient bias due to data heterogeneity. Based on this model, the paper further proposes an online federated reproduced gradient descent (OFedRGD) algorithm. The Wasserstein distance is then employed as a distribution metric to analyze the regret by OFedRGD, which is composed of cumulative distribution drifts and cumulative gradient error caused by stochasticity and heterogeneity. Additionally, a set of CLEAR-datasets, including two online learning tasks, are used to test the proposed algorithm. The results show that the proposed algorithm can effectively improve classification accuracy in the two tasks by <inline-formula><tex-math>$5\\%$</tex-math></inline-formula> and <inline-formula><tex-math>$16\\%$</tex-math></inline-formula>, respectively, and its performance is less adversely affected by the degree of data dispersion.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1379-1393"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Federated Reproduced Gradient Descent With Time-Varying Global Optima\",\"authors\":\"Yifu Lin;Wenling Li;Jia Song;Xiaoming Li\",\"doi\":\"10.1109/TSP.2025.3549591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses an online federated learning problem, where the time drift in data distribution leads to time-varying global optima. To adapt to the drift, this paper designs a random Fourier features (RFF) model combined with Reproducing Kernel Hilbert Space (RKHS) theory to tracking the global gradient. Meanwhile, the model also can mitigate gradient variance from local data and gradient bias due to data heterogeneity. Based on this model, the paper further proposes an online federated reproduced gradient descent (OFedRGD) algorithm. The Wasserstein distance is then employed as a distribution metric to analyze the regret by OFedRGD, which is composed of cumulative distribution drifts and cumulative gradient error caused by stochasticity and heterogeneity. Additionally, a set of CLEAR-datasets, including two online learning tasks, are used to test the proposed algorithm. The results show that the proposed algorithm can effectively improve classification accuracy in the two tasks by <inline-formula><tex-math>$5\\\\%$</tex-math></inline-formula> and <inline-formula><tex-math>$16\\\\%$</tex-math></inline-formula>, respectively, and its performance is less adversely affected by the degree of data dispersion.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"1379-1393\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10918691/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10918691/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Online Federated Reproduced Gradient Descent With Time-Varying Global Optima
This paper addresses an online federated learning problem, where the time drift in data distribution leads to time-varying global optima. To adapt to the drift, this paper designs a random Fourier features (RFF) model combined with Reproducing Kernel Hilbert Space (RKHS) theory to tracking the global gradient. Meanwhile, the model also can mitigate gradient variance from local data and gradient bias due to data heterogeneity. Based on this model, the paper further proposes an online federated reproduced gradient descent (OFedRGD) algorithm. The Wasserstein distance is then employed as a distribution metric to analyze the regret by OFedRGD, which is composed of cumulative distribution drifts and cumulative gradient error caused by stochasticity and heterogeneity. Additionally, a set of CLEAR-datasets, including two online learning tasks, are used to test the proposed algorithm. The results show that the proposed algorithm can effectively improve classification accuracy in the two tasks by $5\%$ and $16\%$, respectively, and its performance is less adversely affected by the degree of data dispersion.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.