基于渐进式对齐的跨域扩散高效自适应检索

Junyu Luo;Yusheng Zhao;Xiao Luo;Zhiping Xiao;Wei Ju;Li Shen;Dacheng Tao;Ming Zhang
{"title":"基于渐进式对齐的跨域扩散高效自适应检索","authors":"Junyu Luo;Yusheng Zhao;Xiao Luo;Zhiping Xiao;Wei Ju;Li Shen;Dacheng Tao;Ming Zhang","doi":"10.1109/TIP.2025.3547678","DOIUrl":null,"url":null,"abstract":"Unsupervised efficient domain adaptive retrieval aims to transfer knowledge from a labeled source domain to an unlabeled target domain, while maintaining low storage cost and high retrieval efficiency. However, existing methods typically fail to address potential noise in the target domain, and directly align high-level features across domains, thus resulting in suboptimal retrieval performance. To address these challenges, we propose a novel Cross-Domain Diffusion with Progressive Alignment method (COUPLE). This approach revisits unsupervised efficient domain adaptive retrieval from a graph diffusion perspective, simulating cross-domain adaptation dynamics to achieve a stable target domain adaptation process. First, we construct a cross-domain relationship graph and leverage noise-robust graph flow diffusion to simulate the transfer dynamics from the source domain to the target domain, identifying lower noise clusters. We then leverage the graph diffusion results for discriminative hash code learning, effectively learning from the target domain while reducing the negative impact of noise. Furthermore, we employ a hierarchical Mixup operation for progressive domain alignment, which is performed along the cross-domain random walk paths. Utilizing target domain discriminative hash learning and progressive domain alignment, COUPLE enables effective domain adaptive hash learning. Extensive experiments demonstrate COUPLE’s effectiveness on competitive benchmarks.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1820-1834"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Domain Diffusion With Progressive Alignment for Efficient Adaptive Retrieval\",\"authors\":\"Junyu Luo;Yusheng Zhao;Xiao Luo;Zhiping Xiao;Wei Ju;Li Shen;Dacheng Tao;Ming Zhang\",\"doi\":\"10.1109/TIP.2025.3547678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised efficient domain adaptive retrieval aims to transfer knowledge from a labeled source domain to an unlabeled target domain, while maintaining low storage cost and high retrieval efficiency. However, existing methods typically fail to address potential noise in the target domain, and directly align high-level features across domains, thus resulting in suboptimal retrieval performance. To address these challenges, we propose a novel Cross-Domain Diffusion with Progressive Alignment method (COUPLE). This approach revisits unsupervised efficient domain adaptive retrieval from a graph diffusion perspective, simulating cross-domain adaptation dynamics to achieve a stable target domain adaptation process. First, we construct a cross-domain relationship graph and leverage noise-robust graph flow diffusion to simulate the transfer dynamics from the source domain to the target domain, identifying lower noise clusters. We then leverage the graph diffusion results for discriminative hash code learning, effectively learning from the target domain while reducing the negative impact of noise. Furthermore, we employ a hierarchical Mixup operation for progressive domain alignment, which is performed along the cross-domain random walk paths. Utilizing target domain discriminative hash learning and progressive domain alignment, COUPLE enables effective domain adaptive hash learning. Extensive experiments demonstrate COUPLE’s effectiveness on competitive benchmarks.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"1820-1834\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10919153/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10919153/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无监督高效领域自适应检索的目的是在保持低存储成本和高检索效率的前提下,将知识从已标记的源领域转移到未标记的目标领域。然而,现有的方法通常无法处理目标域中潜在的噪声,并且直接跨域对齐高级特征,从而导致检索性能不理想。为了解决这些挑战,我们提出了一种新的跨域扩散渐进对齐方法(COUPLE)。该方法从图扩散的角度重新审视无监督的高效域自适应检索,模拟跨域自适应动态,实现稳定的目标域自适应过程。首先,我们构建了一个跨域关系图,并利用噪声鲁棒图流扩散来模拟从源域到目标域的传递动态,从而识别出低噪声的聚类。然后,我们利用图扩散结果进行判别哈希码学习,有效地从目标域学习,同时减少噪声的负面影响。此外,我们采用分层混合操作进行渐进式域对齐,这是沿着跨域随机行走路径执行的。利用目标域判别哈希学习和渐进式域对齐,COUPLE实现了有效的域自适应哈希学习。大量的实验证明了COUPLE在竞争性基准测试中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Domain Diffusion With Progressive Alignment for Efficient Adaptive Retrieval
Unsupervised efficient domain adaptive retrieval aims to transfer knowledge from a labeled source domain to an unlabeled target domain, while maintaining low storage cost and high retrieval efficiency. However, existing methods typically fail to address potential noise in the target domain, and directly align high-level features across domains, thus resulting in suboptimal retrieval performance. To address these challenges, we propose a novel Cross-Domain Diffusion with Progressive Alignment method (COUPLE). This approach revisits unsupervised efficient domain adaptive retrieval from a graph diffusion perspective, simulating cross-domain adaptation dynamics to achieve a stable target domain adaptation process. First, we construct a cross-domain relationship graph and leverage noise-robust graph flow diffusion to simulate the transfer dynamics from the source domain to the target domain, identifying lower noise clusters. We then leverage the graph diffusion results for discriminative hash code learning, effectively learning from the target domain while reducing the negative impact of noise. Furthermore, we employ a hierarchical Mixup operation for progressive domain alignment, which is performed along the cross-domain random walk paths. Utilizing target domain discriminative hash learning and progressive domain alignment, COUPLE enables effective domain adaptive hash learning. Extensive experiments demonstrate COUPLE’s effectiveness on competitive benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信