作为学习的搜索

IF 8.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Kelsey Urgo, Jaime Arguello
{"title":"作为学习的搜索","authors":"Kelsey Urgo, Jaime Arguello","doi":"10.1561/1500000084","DOIUrl":null,"url":null,"abstract":"<p>\nSearch systems are often designed to support simple look-up tasks, such as fact-finding and navigation tasks. However, people increasingly use search engines to complete tasks that require deeper learning. In recent years, the search as learning (SAL) research community has argued that search systems should also be designed to support information-seeking tasks that involve complex learning as an important outcome. This monograph aims to provide a comprehensive review of prior research in search as learning and related areas. <p>Searching to learn can be characterized by specific learning objectives, strategies, and context. Therefore, we begin by reviewing research in education that has aimed at characterizing learning objectives, strategies, and context. Then, we review methods used in prior studies to measure learning during a search session. Here, we discuss two important recommendations for future work: (1) measuring learning retention and (2) measuring a learner's ability to transfer their new knowledge to a novel scenario. Following this, we discuss studies that have focused on understanding factors that influence learning during search and search behaviors that are predictive of learning. Next, we survey tools that have been developed to support learning during search. Searching for the purpose of learning is often a solitary activity. Research in self-regulated learning (SRL) aims to understand how people monitor and control their own learning. Therefore, we review existing models of SRL, methods to measure engagement with specific SRL processes, and tools to support effective SRL. We conclude by discussing potential areas for future research.\n</p></p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"68 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Search as Learning\",\"authors\":\"Kelsey Urgo, Jaime Arguello\",\"doi\":\"10.1561/1500000084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nSearch systems are often designed to support simple look-up tasks, such as fact-finding and navigation tasks. However, people increasingly use search engines to complete tasks that require deeper learning. In recent years, the search as learning (SAL) research community has argued that search systems should also be designed to support information-seeking tasks that involve complex learning as an important outcome. This monograph aims to provide a comprehensive review of prior research in search as learning and related areas. <p>Searching to learn can be characterized by specific learning objectives, strategies, and context. Therefore, we begin by reviewing research in education that has aimed at characterizing learning objectives, strategies, and context. Then, we review methods used in prior studies to measure learning during a search session. Here, we discuss two important recommendations for future work: (1) measuring learning retention and (2) measuring a learner's ability to transfer their new knowledge to a novel scenario. Following this, we discuss studies that have focused on understanding factors that influence learning during search and search behaviors that are predictive of learning. Next, we survey tools that have been developed to support learning during search. Searching for the purpose of learning is often a solitary activity. Research in self-regulated learning (SRL) aims to understand how people monitor and control their own learning. Therefore, we review existing models of SRL, methods to measure engagement with specific SRL processes, and tools to support effective SRL. We conclude by discussing potential areas for future research.\\n</p></p>\",\"PeriodicalId\":48829,\"journal\":{\"name\":\"Foundations and Trends in Information Retrieval\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Information Retrieval\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1561/1500000084\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1561/1500000084","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

搜索系统通常被设计为支持简单的查找任务,例如事实查找和导航任务。然而,人们越来越多地使用搜索引擎来完成需要更深入学习的任务。近年来,搜索即学习(SAL)研究团体认为,搜索系统也应该被设计成支持信息搜索任务,这些任务将复杂的学习作为一个重要的结果。本专著的目的是提供一个全面的审查先前的研究在搜索学习和相关领域。搜索学习可以通过特定的学习目标、策略和环境来表征。因此,我们首先回顾旨在描述学习目标、策略和环境特征的教育研究。然后,我们回顾了先前研究中用于测量搜索过程中学习的方法。在这里,我们讨论了未来工作的两个重要建议:(1)测量学习保留和(2)测量学习者将新知识转移到新场景的能力。在此之后,我们讨论了研究的重点是理解在搜索过程中影响学习的因素和预测学习的搜索行为。接下来,我们调查已经开发的工具,以支持在搜索过程中学习。寻找学习的目的往往是一种孤独的活动。自我调节学习(self-regulated learning, SRL)研究的目的是了解人们如何监控自己的学习。因此,我们回顾了现有的SRL模型,测量特定SRL过程参与的方法,以及支持有效SRL的工具。最后,我们讨论了未来研究的潜在领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Search as Learning

Search systems are often designed to support simple look-up tasks, such as fact-finding and navigation tasks. However, people increasingly use search engines to complete tasks that require deeper learning. In recent years, the search as learning (SAL) research community has argued that search systems should also be designed to support information-seeking tasks that involve complex learning as an important outcome. This monograph aims to provide a comprehensive review of prior research in search as learning and related areas.

Searching to learn can be characterized by specific learning objectives, strategies, and context. Therefore, we begin by reviewing research in education that has aimed at characterizing learning objectives, strategies, and context. Then, we review methods used in prior studies to measure learning during a search session. Here, we discuss two important recommendations for future work: (1) measuring learning retention and (2) measuring a learner's ability to transfer their new knowledge to a novel scenario. Following this, we discuss studies that have focused on understanding factors that influence learning during search and search behaviors that are predictive of learning. Next, we survey tools that have been developed to support learning during search. Searching for the purpose of learning is often a solitary activity. Research in self-regulated learning (SRL) aims to understand how people monitor and control their own learning. Therefore, we review existing models of SRL, methods to measure engagement with specific SRL processes, and tools to support effective SRL. We conclude by discussing potential areas for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations and Trends in Information Retrieval
Foundations and Trends in Information Retrieval COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
39.10
自引率
0.00%
发文量
3
期刊介绍: The surge in research across all domains in the past decade has resulted in a plethora of new publications, causing an exponential growth in published research. Navigating through this extensive literature and staying current has become a time-consuming challenge. While electronic publishing provides instant access to more articles than ever, discerning the essential ones for a comprehensive understanding of any topic remains an issue. To tackle this, Foundations and Trends® in Information Retrieval - FnTIR - addresses the problem by publishing high-quality survey and tutorial monographs in the field. Each issue of Foundations and Trends® in Information Retrieval - FnT IR features a 50-100 page monograph authored by research leaders, covering tutorial subjects, research retrospectives, and survey papers that provide state-of-the-art reviews within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信