宽带量子纠缠分布中的路由和频谱分配

Rohan Bali;Ashley N. Tittelbaugh;Shelbi L. Jenkins;Anuj Agrawal;Jerry Horgan;Marco Ruffini;Daniel C. Kilper;Boulat A. Bash
{"title":"宽带量子纠缠分布中的路由和频谱分配","authors":"Rohan Bali;Ashley N. Tittelbaugh;Shelbi L. Jenkins;Anuj Agrawal;Jerry Horgan;Marco Ruffini;Daniel C. Kilper;Boulat A. Bash","doi":"10.1109/JSAC.2025.3548794","DOIUrl":null,"url":null,"abstract":"We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single broadband quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing and spectrum allocation scheme for distributing entangled photon pairs over such a network. As our setting allows separately solving the routing and spectrum allocation problems, we first find an optimal polynomial-time routing algorithm. We then employ max-min fairness criterion for spectrum allocation, which presents an NP-hard problem. Thus, we focus on approximately-optimal schemes. We compare their performance by evaluating the max-min and median number of EPR-pair rates assigned by them, and the associated Jain index. We identify two polynomial-time approximation algorithms that perform well, or better than others under these metrics. We also investigate scalability by analyzing how the network size and connectivity affect performance using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves higher minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and computational resources are considered. Additionally, we evaluate the effect of the source node placement on the performance.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 5","pages":"1856-1870"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution\",\"authors\":\"Rohan Bali;Ashley N. Tittelbaugh;Shelbi L. Jenkins;Anuj Agrawal;Jerry Horgan;Marco Ruffini;Daniel C. Kilper;Boulat A. Bash\",\"doi\":\"10.1109/JSAC.2025.3548794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single broadband quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing and spectrum allocation scheme for distributing entangled photon pairs over such a network. As our setting allows separately solving the routing and spectrum allocation problems, we first find an optimal polynomial-time routing algorithm. We then employ max-min fairness criterion for spectrum allocation, which presents an NP-hard problem. Thus, we focus on approximately-optimal schemes. We compare their performance by evaluating the max-min and median number of EPR-pair rates assigned by them, and the associated Jain index. We identify two polynomial-time approximation algorithms that perform well, or better than others under these metrics. We also investigate scalability by analyzing how the network size and connectivity affect performance using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves higher minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and computational resources are considered. Additionally, we evaluate the effect of the source node placement on the performance.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"43 5\",\"pages\":\"1856-1870\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10918707/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10918707/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了光网络中量子纠缠分布的资源分配。我们描述和建模了一种采用单一宽带准确定性时频预示爱因斯坦-波多斯基-罗森(EPR)对源的网络架构,并开发了一种路由和频谱分配方案,用于在这种网络上分配纠缠光子对。由于我们的设置允许分别解决路由和频谱分配问题,我们首先找到一个最优多项式时间路由算法。然后,我们采用最大最小公平准则进行频谱分配,这是一个np困难问题。因此,我们关注于近似最优方案。我们通过评估它们分配的epr对率的最大最小值和中位数以及相关的Jain指数来比较它们的性能。我们确定了两种多项式时间近似算法,它们在这些度量下表现良好,或者比其他算法更好。我们还通过使用Watts-Strogatz随机图分析网络大小和连接如何影响性能来研究可伸缩性。我们发现,当考虑中位数epr对率、Jain指数和计算资源时,实现较高最小epr对率的频谱分配方法的性能明显较差。此外,我们还评估了源节点放置对性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution
We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single broadband quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing and spectrum allocation scheme for distributing entangled photon pairs over such a network. As our setting allows separately solving the routing and spectrum allocation problems, we first find an optimal polynomial-time routing algorithm. We then employ max-min fairness criterion for spectrum allocation, which presents an NP-hard problem. Thus, we focus on approximately-optimal schemes. We compare their performance by evaluating the max-min and median number of EPR-pair rates assigned by them, and the associated Jain index. We identify two polynomial-time approximation algorithms that perform well, or better than others under these metrics. We also investigate scalability by analyzing how the network size and connectivity affect performance using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves higher minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and computational resources are considered. Additionally, we evaluate the effect of the source node placement on the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信