Rohan Bali;Ashley N. Tittelbaugh;Shelbi L. Jenkins;Anuj Agrawal;Jerry Horgan;Marco Ruffini;Daniel C. Kilper;Boulat A. Bash
{"title":"宽带量子纠缠分布中的路由和频谱分配","authors":"Rohan Bali;Ashley N. Tittelbaugh;Shelbi L. Jenkins;Anuj Agrawal;Jerry Horgan;Marco Ruffini;Daniel C. Kilper;Boulat A. Bash","doi":"10.1109/JSAC.2025.3548794","DOIUrl":null,"url":null,"abstract":"We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single broadband quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing and spectrum allocation scheme for distributing entangled photon pairs over such a network. As our setting allows separately solving the routing and spectrum allocation problems, we first find an optimal polynomial-time routing algorithm. We then employ max-min fairness criterion for spectrum allocation, which presents an NP-hard problem. Thus, we focus on approximately-optimal schemes. We compare their performance by evaluating the max-min and median number of EPR-pair rates assigned by them, and the associated Jain index. We identify two polynomial-time approximation algorithms that perform well, or better than others under these metrics. We also investigate scalability by analyzing how the network size and connectivity affect performance using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves higher minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and computational resources are considered. Additionally, we evaluate the effect of the source node placement on the performance.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 5","pages":"1856-1870"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution\",\"authors\":\"Rohan Bali;Ashley N. Tittelbaugh;Shelbi L. Jenkins;Anuj Agrawal;Jerry Horgan;Marco Ruffini;Daniel C. Kilper;Boulat A. Bash\",\"doi\":\"10.1109/JSAC.2025.3548794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single broadband quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing and spectrum allocation scheme for distributing entangled photon pairs over such a network. As our setting allows separately solving the routing and spectrum allocation problems, we first find an optimal polynomial-time routing algorithm. We then employ max-min fairness criterion for spectrum allocation, which presents an NP-hard problem. Thus, we focus on approximately-optimal schemes. We compare their performance by evaluating the max-min and median number of EPR-pair rates assigned by them, and the associated Jain index. We identify two polynomial-time approximation algorithms that perform well, or better than others under these metrics. We also investigate scalability by analyzing how the network size and connectivity affect performance using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves higher minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and computational resources are considered. Additionally, we evaluate the effect of the source node placement on the performance.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"43 5\",\"pages\":\"1856-1870\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10918707/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10918707/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution
We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single broadband quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing and spectrum allocation scheme for distributing entangled photon pairs over such a network. As our setting allows separately solving the routing and spectrum allocation problems, we first find an optimal polynomial-time routing algorithm. We then employ max-min fairness criterion for spectrum allocation, which presents an NP-hard problem. Thus, we focus on approximately-optimal schemes. We compare their performance by evaluating the max-min and median number of EPR-pair rates assigned by them, and the associated Jain index. We identify two polynomial-time approximation algorithms that perform well, or better than others under these metrics. We also investigate scalability by analyzing how the network size and connectivity affect performance using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves higher minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and computational resources are considered. Additionally, we evaluate the effect of the source node placement on the performance.