变暖通过招募系统发育不同但功能相似的微生物来刺激纤维素分解。

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycae152
Yifan Su, Xue Guo, Yamei Gao, Jiajie Feng, Linwei Wu, Jiesi Lei, Suo Liu, Qun Gao, Yufei Zeng, Wei Qin, Zheng Shi, Zhengxiong Liang, Zhencheng Ye, Mengting Yuan, Daliang Ning, Liyou Wu, Jizhong Zhou, Yunfeng Yang
{"title":"变暖通过招募系统发育不同但功能相似的微生物来刺激纤维素分解。","authors":"Yifan Su, Xue Guo, Yamei Gao, Jiajie Feng, Linwei Wu, Jiesi Lei, Suo Liu, Qun Gao, Yufei Zeng, Wei Qin, Zheng Shi, Zhengxiong Liang, Zhencheng Ye, Mengting Yuan, Daliang Ning, Liyou Wu, Jizhong Zhou, Yunfeng Yang","doi":"10.1093/ismeco/ycae152","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose is the most abundant component of plant litter, which is critical for terrestrial carbon cycling. Nonetheless, it remains unknown how global warming affects cellulose-decomposing microorganisms. Here, we carried out a 3-year litterbag experiment to examine cellulose decomposition undergoing +3°C warming in a tallgrass prairie. Most cellulose-associated bacteria and fungi in litterbags were also detected in bulk soil, and bacteria in litterbags had higher community-level <i>rrn</i> copy numbers, larger genome sizes, and higher genome guanine-cytosine (GC) contents than those in bulk soil, implying higher growth rates. Warming stimulated soil respiration by 32.3% and accelerated mass loss of cellulose, concurring with the increase in relative abundances of most functional genes associated with carbon decomposition in litterbags. Incorporating cellulose-decomposing genes into an ecosystem model reduced model parameter uncertainty and showed that warming stimulated microbial biomass, activity, and soil carbon decomposition. Collectively, our study supports a trait-centric view since cellulose-decomposing genes or genomic traits are amenable for ecosystem modeling. By characterizing the phylogenetically diverse yet functionally similar cellulose-associated microorganisms and their responses to warming, we take a step toward more precise predictions of soil carbon dynamics under future climate scenarios.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycae152"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892950/pdf/","citationCount":"0","resultStr":"{\"title\":\"Warming stimulates cellulose decomposition by recruiting phylogenetically diverse but functionally similar microorganisms.\",\"authors\":\"Yifan Su, Xue Guo, Yamei Gao, Jiajie Feng, Linwei Wu, Jiesi Lei, Suo Liu, Qun Gao, Yufei Zeng, Wei Qin, Zheng Shi, Zhengxiong Liang, Zhencheng Ye, Mengting Yuan, Daliang Ning, Liyou Wu, Jizhong Zhou, Yunfeng Yang\",\"doi\":\"10.1093/ismeco/ycae152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellulose is the most abundant component of plant litter, which is critical for terrestrial carbon cycling. Nonetheless, it remains unknown how global warming affects cellulose-decomposing microorganisms. Here, we carried out a 3-year litterbag experiment to examine cellulose decomposition undergoing +3°C warming in a tallgrass prairie. Most cellulose-associated bacteria and fungi in litterbags were also detected in bulk soil, and bacteria in litterbags had higher community-level <i>rrn</i> copy numbers, larger genome sizes, and higher genome guanine-cytosine (GC) contents than those in bulk soil, implying higher growth rates. Warming stimulated soil respiration by 32.3% and accelerated mass loss of cellulose, concurring with the increase in relative abundances of most functional genes associated with carbon decomposition in litterbags. Incorporating cellulose-decomposing genes into an ecosystem model reduced model parameter uncertainty and showed that warming stimulated microbial biomass, activity, and soil carbon decomposition. Collectively, our study supports a trait-centric view since cellulose-decomposing genes or genomic traits are amenable for ecosystem modeling. By characterizing the phylogenetically diverse yet functionally similar cellulose-associated microorganisms and their responses to warming, we take a step toward more precise predictions of soil carbon dynamics under future climate scenarios.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":\"5 1\",\"pages\":\"ycae152\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892950/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycae152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纤维素是植物凋落物中最丰富的成分,对陆地碳循环至关重要。尽管如此,全球变暖如何影响分解纤维素的微生物仍不得而知。在这里,我们进行了一个为期3年的垃圾袋实验,以研究高草草原在+3°C升温过程中纤维素的分解情况。在散装土壤中也检测到大部分纤维素相关细菌和真菌,并且与散装土壤相比,垃圾袋中的细菌具有更高的群落水平rrn拷贝数,更大的基因组大小和更高的基因组鸟嘌呤-胞嘧啶(GC)含量,意味着更高的生长速度。变暖使土壤呼吸增加32.3%,并加速纤维素的质量损失,与垃圾袋中与碳分解相关的大多数功能基因的相对丰度增加相一致。将纤维素分解基因纳入生态系统模型降低了模型参数的不确定性,并表明变暖刺激了微生物生物量、活性和土壤碳分解。总的来说,我们的研究支持以性状为中心的观点,因为纤维素分解基因或基因组性状适合生态系统建模。通过描述系统发育多样但功能相似的纤维素相关微生物及其对变暖的反应,我们向更精确地预测未来气候情景下的土壤碳动态迈出了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Warming stimulates cellulose decomposition by recruiting phylogenetically diverse but functionally similar microorganisms.

Cellulose is the most abundant component of plant litter, which is critical for terrestrial carbon cycling. Nonetheless, it remains unknown how global warming affects cellulose-decomposing microorganisms. Here, we carried out a 3-year litterbag experiment to examine cellulose decomposition undergoing +3°C warming in a tallgrass prairie. Most cellulose-associated bacteria and fungi in litterbags were also detected in bulk soil, and bacteria in litterbags had higher community-level rrn copy numbers, larger genome sizes, and higher genome guanine-cytosine (GC) contents than those in bulk soil, implying higher growth rates. Warming stimulated soil respiration by 32.3% and accelerated mass loss of cellulose, concurring with the increase in relative abundances of most functional genes associated with carbon decomposition in litterbags. Incorporating cellulose-decomposing genes into an ecosystem model reduced model parameter uncertainty and showed that warming stimulated microbial biomass, activity, and soil carbon decomposition. Collectively, our study supports a trait-centric view since cellulose-decomposing genes or genomic traits are amenable for ecosystem modeling. By characterizing the phylogenetically diverse yet functionally similar cellulose-associated microorganisms and their responses to warming, we take a step toward more precise predictions of soil carbon dynamics under future climate scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信