{"title":"[创伤学中的3D打印/植入物]。","authors":"Nico Bruns, Mohamed Omar","doi":"10.1007/s00113-025-01546-1","DOIUrl":null,"url":null,"abstract":"<p><p>The use of 3D printing offers numerous application possibilities in traumatology, including anatomic models, repositioning and drilling guides as well as patient-specific implants. The greatest challenge lies in the rapid availability as many procedures require an immediate intervention. Anatomic models support surgical planning by complementing visual impressions with tactile ones. Printed models not only help in the establishment of surgical strategies but also enhance patient clarification. Studies demonstrate that these models significantly reduce the operating time, duration of fluoroscopy and blood loss, particularly for joint fractures. Repositioning and drilling guides simplify complex procedures and improve outcomes; however, they require precise planning and critical evaluation by the surgeon. Intraoperative guides are helpful, for instance, in accurately placing screws, especially in difficult to access areas or in metaphyseal fractures lacking clear references. Individualized implants play a lesser role in acute care but are useful for posttraumatic defects or corrective osteotomy. In the conservative segment, such as customized splints, 3D printing is being tested but with mixed results. Key requirements for 3D printing in traumatology include high-resolution computed tomography (CT), precise data processing and swift production. Regulatory hurdles and lack of reimbursement currently limit the widespread use. An optimized collaboration between technology and medicine, along with standardized processes, are essential for effectively integrating this technology into practice.</p>","PeriodicalId":75280,"journal":{"name":"Unfallchirurgie (Heidelberg, Germany)","volume":" ","pages":"329-336"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[3D printing/implants in traumatology].\",\"authors\":\"Nico Bruns, Mohamed Omar\",\"doi\":\"10.1007/s00113-025-01546-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of 3D printing offers numerous application possibilities in traumatology, including anatomic models, repositioning and drilling guides as well as patient-specific implants. The greatest challenge lies in the rapid availability as many procedures require an immediate intervention. Anatomic models support surgical planning by complementing visual impressions with tactile ones. Printed models not only help in the establishment of surgical strategies but also enhance patient clarification. Studies demonstrate that these models significantly reduce the operating time, duration of fluoroscopy and blood loss, particularly for joint fractures. Repositioning and drilling guides simplify complex procedures and improve outcomes; however, they require precise planning and critical evaluation by the surgeon. Intraoperative guides are helpful, for instance, in accurately placing screws, especially in difficult to access areas or in metaphyseal fractures lacking clear references. Individualized implants play a lesser role in acute care but are useful for posttraumatic defects or corrective osteotomy. In the conservative segment, such as customized splints, 3D printing is being tested but with mixed results. Key requirements for 3D printing in traumatology include high-resolution computed tomography (CT), precise data processing and swift production. Regulatory hurdles and lack of reimbursement currently limit the widespread use. An optimized collaboration between technology and medicine, along with standardized processes, are essential for effectively integrating this technology into practice.</p>\",\"PeriodicalId\":75280,\"journal\":{\"name\":\"Unfallchirurgie (Heidelberg, Germany)\",\"volume\":\" \",\"pages\":\"329-336\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unfallchirurgie (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00113-025-01546-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unfallchirurgie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00113-025-01546-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The use of 3D printing offers numerous application possibilities in traumatology, including anatomic models, repositioning and drilling guides as well as patient-specific implants. The greatest challenge lies in the rapid availability as many procedures require an immediate intervention. Anatomic models support surgical planning by complementing visual impressions with tactile ones. Printed models not only help in the establishment of surgical strategies but also enhance patient clarification. Studies demonstrate that these models significantly reduce the operating time, duration of fluoroscopy and blood loss, particularly for joint fractures. Repositioning and drilling guides simplify complex procedures and improve outcomes; however, they require precise planning and critical evaluation by the surgeon. Intraoperative guides are helpful, for instance, in accurately placing screws, especially in difficult to access areas or in metaphyseal fractures lacking clear references. Individualized implants play a lesser role in acute care but are useful for posttraumatic defects or corrective osteotomy. In the conservative segment, such as customized splints, 3D printing is being tested but with mixed results. Key requirements for 3D printing in traumatology include high-resolution computed tomography (CT), precise data processing and swift production. Regulatory hurdles and lack of reimbursement currently limit the widespread use. An optimized collaboration between technology and medicine, along with standardized processes, are essential for effectively integrating this technology into practice.