Ian M. Henderson , Angelica D. Benevidez , Curtis D. Mowry , John Watt , George D. Bachand , Martin L. Kirk , Karol Dokładny , Joshua DeAguero , G. Patricia Escobar , Brent Wagner
{"title":"从磁共振成像造影剂中析出的钆可能是毒性的黄铜钉。","authors":"Ian M. Henderson , Angelica D. Benevidez , Curtis D. Mowry , John Watt , George D. Bachand , Martin L. Kirk , Karol Dokładny , Joshua DeAguero , G. Patricia Escobar , Brent Wagner","doi":"10.1016/j.mri.2025.110383","DOIUrl":null,"url":null,"abstract":"<div><div>The formation of gadolinium-rich nanoparticles in multiple tissues from intravenous magnetic resonance imaging contrast agents may be the initial step in rare earth metallosis. The mechanism of gadolinium-induced diseases is poorly understood, as is how these characteristic nanoparticles are formed. Gadolinium deposition has been observed with all magnetic resonance imaging contrast agent brands. Aside from endogenous metals and acidic conditions, little attention has been paid to the role of the biological milieu in the degradation of magnetic resonance imaging contrast agents into nanoparticles. Herein, we describe the decomposition of the commercial magnetic resonance imaging contrast agents Omniscan and Dotarem in the presence of oxalic acid, a well-known endogenous compound. Omniscan dechelated rapidly and preluded measurement by the means available, while Dotarem underwent a two-step decomposition process. The decomposition of both magnetic resonance imaging contrast agents by oxalic acid formed gadolinium oxalate (Gd<sub>2</sub>[C<sub>2</sub>O<sub>4</sub>]<sub>3</sub>, Gd<sub>2</sub>Ox<sub>3</sub>). Furthermore, both observed steps of the Dotarem reaction involved the associative addition of oxalic acid. Adding protein (bovine serum albumin) increased the rate of dechelation. Displacement reactions could occur at lysosomal pH. Through these studies, we have demonstrated that magnetic resonance imaging contrast agents can be dissociated by endogenous molecules, thus illustrating a metric by which gadolinium-based contrast agents (GBCAs) might be destabilized in vivo.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"119 ","pages":"Article 110383"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precipitation of gadolinium from magnetic resonance imaging contrast agents may be the Brass tacks of toxicity\",\"authors\":\"Ian M. Henderson , Angelica D. Benevidez , Curtis D. Mowry , John Watt , George D. Bachand , Martin L. Kirk , Karol Dokładny , Joshua DeAguero , G. Patricia Escobar , Brent Wagner\",\"doi\":\"10.1016/j.mri.2025.110383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The formation of gadolinium-rich nanoparticles in multiple tissues from intravenous magnetic resonance imaging contrast agents may be the initial step in rare earth metallosis. The mechanism of gadolinium-induced diseases is poorly understood, as is how these characteristic nanoparticles are formed. Gadolinium deposition has been observed with all magnetic resonance imaging contrast agent brands. Aside from endogenous metals and acidic conditions, little attention has been paid to the role of the biological milieu in the degradation of magnetic resonance imaging contrast agents into nanoparticles. Herein, we describe the decomposition of the commercial magnetic resonance imaging contrast agents Omniscan and Dotarem in the presence of oxalic acid, a well-known endogenous compound. Omniscan dechelated rapidly and preluded measurement by the means available, while Dotarem underwent a two-step decomposition process. The decomposition of both magnetic resonance imaging contrast agents by oxalic acid formed gadolinium oxalate (Gd<sub>2</sub>[C<sub>2</sub>O<sub>4</sub>]<sub>3</sub>, Gd<sub>2</sub>Ox<sub>3</sub>). Furthermore, both observed steps of the Dotarem reaction involved the associative addition of oxalic acid. Adding protein (bovine serum albumin) increased the rate of dechelation. Displacement reactions could occur at lysosomal pH. Through these studies, we have demonstrated that magnetic resonance imaging contrast agents can be dissociated by endogenous molecules, thus illustrating a metric by which gadolinium-based contrast agents (GBCAs) might be destabilized in vivo.</div></div>\",\"PeriodicalId\":18165,\"journal\":{\"name\":\"Magnetic resonance imaging\",\"volume\":\"119 \",\"pages\":\"Article 110383\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0730725X25000670\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X25000670","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Precipitation of gadolinium from magnetic resonance imaging contrast agents may be the Brass tacks of toxicity
The formation of gadolinium-rich nanoparticles in multiple tissues from intravenous magnetic resonance imaging contrast agents may be the initial step in rare earth metallosis. The mechanism of gadolinium-induced diseases is poorly understood, as is how these characteristic nanoparticles are formed. Gadolinium deposition has been observed with all magnetic resonance imaging contrast agent brands. Aside from endogenous metals and acidic conditions, little attention has been paid to the role of the biological milieu in the degradation of magnetic resonance imaging contrast agents into nanoparticles. Herein, we describe the decomposition of the commercial magnetic resonance imaging contrast agents Omniscan and Dotarem in the presence of oxalic acid, a well-known endogenous compound. Omniscan dechelated rapidly and preluded measurement by the means available, while Dotarem underwent a two-step decomposition process. The decomposition of both magnetic resonance imaging contrast agents by oxalic acid formed gadolinium oxalate (Gd2[C2O4]3, Gd2Ox3). Furthermore, both observed steps of the Dotarem reaction involved the associative addition of oxalic acid. Adding protein (bovine serum albumin) increased the rate of dechelation. Displacement reactions could occur at lysosomal pH. Through these studies, we have demonstrated that magnetic resonance imaging contrast agents can be dissociated by endogenous molecules, thus illustrating a metric by which gadolinium-based contrast agents (GBCAs) might be destabilized in vivo.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.